日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點(diǎn)P、Q且.
          (1)求點(diǎn)T的橫坐標(biāo);
          (2)若以F1,F2為焦點(diǎn)的橢圓C過點(diǎn).
          ①求橢圓C的標(biāo)準(zhǔn)方程;
          ②過點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),求的取值范圍.
          (1)
          (2),

          試題分析:解:(1)由題意得,,設(shè),
          ,.
          ,
          ,①                       2分
          在拋物線上,則,②
          聯(lián)立①、②易得                                      4分
          (2)①設(shè)橢圓的半焦距為,由題意得,
          設(shè)橢圓的標(biāo)準(zhǔn)方程為
             ③ ,         ④               5分
          將④代入③,解得(舍去)
          所以                                          6分
          故橢圓的標(biāo)準(zhǔn)方程為                             7分
          ②. (ⅰ)當(dāng)直線的斜率不存在時(shí), ,
          ,所以            8分
          (ⅱ)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為

          設(shè),則由根與系數(shù)的關(guān)系,
          可得:,                    9分
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240158253391105.png" style="vertical-align:middle;" />,所以,
          ,

                 11分
          ,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015825448719.png" style="vertical-align:middle;" />,即,
          所以
          所以                                   13分
          綜上所述:.                             14分
          點(diǎn)評(píng):主要是考查了直線與圓的位置關(guān)系的運(yùn)用屬于基礎(chǔ)題。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知橢圓C: 的左、右焦點(diǎn)分別為,離心率為,點(diǎn)A是橢圓上任一點(diǎn),的周長(zhǎng)為.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點(diǎn)任作一動(dòng)直線l交橢圓C于兩點(diǎn),記,若在線段上取一點(diǎn)R,使得,則當(dāng)直線l轉(zhuǎn)動(dòng)時(shí),點(diǎn)R在某一定直線上運(yùn)動(dòng),求該定直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.
          (Ⅰ)求橢圓C的方程和離心率e;
          (Ⅱ)若點(diǎn)P為焦點(diǎn)F1關(guān)于直線的對(duì)稱點(diǎn),動(dòng)點(diǎn)M滿足. 問是否存在一個(gè)定點(diǎn)T,使得動(dòng)點(diǎn)M到定點(diǎn)T的距離為定值?若存在,求出定點(diǎn)T的坐標(biāo)及此定值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          是2和8的等比中項(xiàng),則圓錐曲線的離心率是(   )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          (5分)從橢圓上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn)F1,A是橢圓與x軸正半軸的交點(diǎn),B是橢圓與y軸正半軸的交點(diǎn),且AB∥OP(O是坐標(biāo)原點(diǎn)),則該橢圓的離心率是( 。
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系中,已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,短軸長(zhǎng)為,離心率為.
          (I)求橢圓的方程;
          (II) 為橢圓上滿足的面積為的任意兩點(diǎn),為線段的中點(diǎn),射線交橢圓與點(diǎn),設(shè),求實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)分別是橢圓:的左、右焦點(diǎn),過傾斜角為的直線 與該橢圓相交于P,兩點(diǎn),且.
          (Ⅰ)求該橢圓的離心率;
          (Ⅱ)設(shè)點(diǎn) 滿足,求該橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的離心率為,分別為橢圓的左、右焦點(diǎn),若橢圓的焦距為2.
          ⑴求橢圓的方程;
          ⑵設(shè)為橢圓上任意一點(diǎn),以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線有公共點(diǎn)時(shí),求△面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知點(diǎn)是橢圓上一點(diǎn),為橢圓的一個(gè)焦點(diǎn),且軸,焦距,則橢圓的離心率是(     )
          A.B.-1C.-1D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案