日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知正數(shù)數(shù)列{an}的前n項(xiàng)和Sn,且對(duì)任意的正整數(shù)n滿足2
          Sn
          =an+1

          (1)求數(shù)列{an}的通項(xiàng)公式
          (2)設(shè)bn=
          1
          anan+1
          ,數(shù)列{bn}的前n項(xiàng)和為Bn,求Bn范圍
          分析:(1)仿寫一個(gè)等式,兩式相減,得到數(shù)列的項(xiàng)的遞推關(guān)系,據(jù)此遞推關(guān)系,判斷出數(shù)列是等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式求出通項(xiàng).
          (2)將數(shù)列的通項(xiàng)裂成兩項(xiàng)的差,通過疊加相互抵消,求出數(shù)列的前n項(xiàng)和,即可得出結(jié)論.
          解答:解:(1)由2
          Sn
          =an+1,n=1代入得a1=1,
          兩邊平方得4Sn=(an+1)2(1),
          n≥2時(shí),4Sn-1=(an-1+1)2(2),
          (1)-(2),得4an=(an+1)2-(an-1+1)2,
          ∴(an-1)2-(an-1+1)2=0(3分)
          ∴[(an-1)+(an-1+1)]•[(an-1)-(an-1+1)]=0,
          由正數(shù)數(shù)列{an},得an-an-1=2,
          ∴數(shù)列{an}是以1為首項(xiàng),2為公差的等差數(shù)列,
          ∴有an=2n-1;
          (2)bn=
          1
          anan+1
          =
          1
          (2n-1)(2n+1)
          =
          1
          2
          1
          2n-1
          -
          1
          2n+1
          ),
          ∴Bn=
          1
          2
          1-
          1
          3
          +
          1
          3
          -
          1
          5
          +…+
          1
          2n-1
          -
          1
          2n+1
          )=
          1
          2
          2n
          2n+1
          =
          n
          2n+1
          =
          1
          2
          +
          -
          1
          2
          2n+1
          ,
          ∵n≥1,
          ∴2n+1≥3,
          1
          3
          ≤Bn
          1
          2
          點(diǎn)評(píng):若知數(shù)列的和與項(xiàng)的遞推關(guān)系求通項(xiàng),常采用仿寫的方法;求數(shù)列的前n項(xiàng)和,一般先判斷通項(xiàng)的特點(diǎn),然后采用合適的求和方法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正數(shù)數(shù)列{an}中,a1=2.若關(guān)于x的方程x2-(
          an+1
          )x+
          2an+1
          4
          =0(n∈N×))對(duì)任意自然數(shù)n都有相等的實(shí)根.
          (1)求a2,a3的值;
          (2)求證
          1
          1+a1
          +
          1
          1+a2
          +
          1
          1+a3
          +…+
          1
          1+an
          2
          3
          (n∈N×).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          10、已知正數(shù)數(shù)列{an}對(duì)任意p,q∈N*,都有ap+q=ap•aq,若a2=4,則a9=
          512

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正數(shù)數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an滿足2
          Sn
          =an+1
          ,求an

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn2=a13+a23+…+an3
          (Ⅰ)求證:數(shù)列{an}為等差數(shù)列,并求出通項(xiàng)公式;
          (Ⅱ)設(shè)bn=(1-
          1
          an
          2-a(1-
          1
          an
          ),若bn+1>bn對(duì)任意n∈N*恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案