設(shè)雙曲線的一條漸近線與拋物線y=x2+1只有一個(gè)公共點(diǎn),則雙曲線的離心率為( )
A.![]() | B.5 | C.![]() | D.![]() |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知直線,圓
.
(Ⅰ)證明:對(duì)任意,直線
與圓
恒有兩個(gè)公共點(diǎn).
(Ⅱ)過(guò)圓心作
于點(diǎn)
,當(dāng)
變化時(shí),求點(diǎn)
的軌跡
的方程.
(Ⅲ)直線與點(diǎn)
的軌跡
交于點(diǎn)
,與圓
交于點(diǎn)
,是否存在
的值,使得
?若存在,試求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知圓的圓心為
,圓
:
的圓心為
,一動(dòng)圓與圓
內(nèi)切,與圓
外切.
(Ⅰ)求動(dòng)圓圓心的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點(diǎn),使得
為鈍角?若存在,求出點(diǎn)
橫坐標(biāo)的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題8分)
已知直線(
為參數(shù)),圓
(
為參數(shù)).
(Ⅰ)當(dāng)時(shí),試判斷直線
與圓
的位置關(guān)系;
(Ⅱ)若直線與圓
截得的弦長(zhǎng)為1,求直線
的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)是橢圓
的左、右焦點(diǎn),
為直線
上一點(diǎn),
是底角為
的等腰三角形,則
的離心率為( )
A.![]() | B.![]() | C.![]() | D.![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知是拋物線
上任意一點(diǎn),則當(dāng)
點(diǎn)到直線
的距離最小時(shí),
點(diǎn)與該拋物線的準(zhǔn)線的距離是
A.2 | B.1 | C.![]() | D.![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)是關(guān)于t的方程
的兩個(gè)不等實(shí)根,則過(guò)
,
兩點(diǎn)的直線與雙曲線
的公共點(diǎn)的個(gè)數(shù)為
A.3 | B.2 | C.1 | D.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知橢圓C1和拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從它們每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
x | 5 | -![]() | 4 | ![]() | ![]() |
y | 2![]() | 0 | -4 | ![]() | -![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
等軸雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,C與拋物線y2=16x的準(zhǔn)線交于A,B兩點(diǎn),|AB|=4,則C的實(shí)軸長(zhǎng)為( )
A.![]() | B.2![]() | C.4 | D.8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com