日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四棱錐A-BCDE中,底面四邊形BCDE是等腰梯形,BC∥DE, =45 ,O是BC的中點(diǎn),AO= ,且BC=6,AD=AE=2CD=2 ,

          (1)證明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.

          (1)證明詳見(jiàn)解析;(2) 

          解析試題分析:(1)根據(jù)勾股定理證,即,再證,直線與平面垂直的判定定理即可得證明;

          (2)過(guò)O點(diǎn)作交CD的延長(zhǎng)線于H,根據(jù)已知可證二面角A-CD-B的平面角,然后通過(guò)解三角形即可求得.
          試題解析:(1)易得OC=3,AD=2,連結(jié)OD,OE,在∆OCD中,
          由余弦定理可得OD= =.
          ∵AD=2,∴,∴,
          同理可證:,又∵,平面BCD , 平面BCD ,∴AO⊥平面BCD;
          (2)方法一:過(guò)O點(diǎn)作交CD的延長(zhǎng)線于H,連結(jié)AH,因?yàn)锳O⊥平面BCD,所以,故為二面角A-CD-B的平面角.
          因?yàn)镺C=3, =45,所以O(shè)H= ,從而tan=.

          方法二:以O(shè)為原點(diǎn),建立空間直角坐標(biāo)系O-xyz如圖所示.則A(0,0, ),C(0,-3,0),D(1,-2,0),
          所以=(0,3,),=(-1,2,).
          設(shè)為平面ACD的一個(gè)法向量,則 ,
           解得 ,令x=1,得.
          由(1)知,為平面CDB的一個(gè)法向量,所以cos< >==,
          由A-CD-B為銳二面角,所以二面角A-CD-B的平面角的正切值為 .
          考點(diǎn):1. 直線與平面垂直的判定定理;2.直線與平面垂直的性質(zhì)以及直線與平面所成的角.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,已知在四棱錐中,底面是矩形,平面、分別是、的中點(diǎn).

          (Ⅰ)求證:平面;
          (Ⅱ)若與平面所成角為,且,求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2(1)PD.

          (1)證明:平面PQC⊥平面DCQ;
          (2)求二面角D—PQ—C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          四棱錐中,⊥底面,,,.

          (Ⅰ)求證:⊥平面;
          (Ⅱ)若側(cè)棱上的點(diǎn)滿足,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,四棱錐的底面為正方形,底面,分別是的中點(diǎn).

          (1)求證:平面;
          (2)求證:平面平面;
          (3)若,求與平面所成的角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,四棱錐P-ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點(diǎn),且2BE=EP.

          (1)證明:AC⊥DE;
          (2)若PC=BC,求二面角E-AC一P的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知直角梯形,邊上的中點(diǎn)(如圖甲),,,,將沿折到的位置,使,點(diǎn)上,且(如圖乙)

          (Ⅰ)求證:平面ABCD.
          (Ⅱ)求二面角E?AC?D的余弦值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在四棱錐中,底面是正方形,側(cè)面是正三角形,平面底面

          (I) 證明:平面;
          (II)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù),曲線處的切線過(guò)點(diǎn).
          (Ⅰ)求函數(shù)的解析式;
          (Ⅱ)當(dāng)時(shí),求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案