日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}、{bn}中,對任何正整數(shù)n都有:

          a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.

          (1)若數(shù)列{an}是首項(xiàng)和公差都是1的等差數(shù)列,求證:數(shù)列{bn}是等比數(shù)列;

          (2)若數(shù)列{bn}是等比數(shù)列,數(shù)列{an}是否是等差數(shù)列,若是,請求出通項(xiàng)公式;若不是,請說明理由;

          (3)若數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,求證:.

          解:(1)依題意數(shù)列{an}的通項(xiàng)公式是an=n,

          故等式即為bn+2bn-1+3bn-2+…+(n-1)b2+nb1=2n+1-n-2,

          同時(shí)有bn-1+2bn-2+3bn-3+…+(n-2)b2+(n-1)b1=2n-n-1(n≥2),

          兩式相減可得bn+bn-1+…+b2+b1=2n-1,

          可得數(shù)列{bn}的通項(xiàng)公式是bn=2n-1,

          知數(shù)列{bn}是首項(xiàng)為1,公比為2的等比數(shù)列.

          (2)設(shè)等比數(shù)列{bn}的首項(xiàng)為b,公比為q,則bn=bqn-1,從而有:

          bqn-1a1+bqn-2a2+bqn-3a3+…+bqan-1+ban=2n+1-n-2.

          又bqn-2a1+bqn-3a2+bqn-4a3+…+ban-1=2n-n-1(n≥2),

          故(2n-n-1)q+ban=2n+1-n-2,

          an=×2n+×n+,

          要使an+1-an是與n無關(guān)的常數(shù),必須q=2,

          即①當(dāng)?shù)缺葦?shù)列{bn}的公比q=2時(shí),數(shù)列{an}是等差數(shù)列,其通項(xiàng)公式是an=;

          ②當(dāng)?shù)缺葦?shù)列{bn}的公比不是2時(shí),數(shù)列{an}不是等差數(shù)列.

          (3)證明:由(2)知anbn=n·2n

          =+…+,

          =+…+(n≥5)

          =+++×

          =+++×()n-3

          =×()n-3×()n-3.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1<0,
          an+1
          an
          =
          1
          2
          ,則數(shù)列{an}是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
          (I)若bn=
          ann
          +1
          ,試證明數(shù)列{bn}為等比數(shù)列;
          (II)求數(shù)列{an}的通項(xiàng)公式an與前n項(xiàng)和Sn.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•順義區(qū)二模)已知數(shù)列{an}中,an=-4n+5,等比數(shù)列{bn}的公比q滿足q=an-an-1(n≥2),且b1=a2,則|b1|+|b2|+…+|bn|=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和Sn=n2+3n+1,則數(shù)列{an}的通項(xiàng)公式為
          an=
          5
                n=1
          2n+2
              n≥2
          an=
          5
                n=1
          2n+2
              n≥2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n,那么它的通項(xiàng)公式為an=
          2n
          2n

          查看答案和解析>>

          同步練習(xí)冊答案