日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•金山區(qū)二模)圓柱側(cè)面展開圖是一個邊長為2的正方形,則其體積為
          2
          π
          2
          π
          分析:通過側(cè)面展開圖是一個邊長為2的正方形,求出底面半徑,求出圓柱的高,然后求圓柱的體積.
          解答:解:圓柱的側(cè)面展開圖是一個邊長為2的正方形,
          所以底面半徑為:
          1
          π
          ,底面面積為:
          1
          π
          ;
          所以圓柱的高為:2,
          所以圓柱的體積為:
          1
          π
          ×2
          =
          2
          π

          故答案為:
          2
          π
          點評:本題考查圓柱的體積,考查計算能力,正確認(rèn)識圓柱的側(cè)面展開圖與幾何體的關(guān)系,是解題的突破口,本題是基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•金山區(qū)二模)用數(shù)學(xué)歸納法證明1-
          1
          2
          +
          1
          3
          -
          1
          4
          +…+
          1
          2n-1
          -
          1
          2n
          =
          1
          n+1
          +
          1
          n+2
          +…+
          1
          2n
          (n∈N*),則從“n=k到n=k+1”,左邊所要添加的項是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•金山區(qū)二模)函數(shù)f(x)=sinπx的最小正周期是
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•金山區(qū)二模)已知f(x)為奇函數(shù),且當(dāng)x>0時f(x)=x(x-1),則f(-3)=
          -6
          -6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•金山區(qū)二模)函數(shù)y=lg(x2-2x+4)的單調(diào)遞減區(qū)間是
          (-∞,1),(端點1處不考慮開和閉)
          (-∞,1),(端點1處不考慮開和閉)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

          (2009•金山區(qū)二模)設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請先閱讀下列材料,然后回答問題.
          材料:已知函數(shù)g(x)=-
          1
          f(x)
          ,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個同學(xué)給出了如下解答:
          解:令u=-f(x)=-x2-x,則u=-(x+
          1
          2
          2+
          1
          4

          當(dāng)x=-
          1
          2
          時,u有最大值,umax=
          1
          4
          ,顯然u沒有最小值,
          ∴當(dāng)x=-
          1
          2
          時,g(x)有最小值4,沒有最大值.
          請回答:上述解答是否正確?若不正確,請給出正確的解答;
          (3)設(shè)an=
          f(n)
          2n-1
          ,請?zhí)岢龃藛栴}的一個結(jié)論,例如:求通項an.并給出正確解答.
          注意:第(3)題中所提問題單獨給分,.解答也單獨給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

          查看答案和解析>>

          同步練習(xí)冊答案