日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知在四棱錐P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
          PA=AD=1,AB=2,E、F分別是AB、PD的中點(diǎn).
          (Ⅰ)求證:AF∥平面PEC;
          (Ⅱ)求PC與平面ABCD所成角的正切值;
          (Ⅲ)求二面角P-EC-D的正切值.
          【答案】分析:(Ⅰ)取PC的中點(diǎn)O,連接OF、OE.可得FO∥DC,且FO=DC,又FO=AE.AF∥OE又OE?平面PEC,AF?平面PEC,可得線面平行.
          (Ⅱ)PA⊥平面ABCD可得∠PCA是直線PC與平面ABCD所成的角.在Rt△PAC中,
          (Ⅲ)作AM⊥CE,交CE的延長線于M.連接PM,得PM⊥CE,∴∠PMA是二面角P-EC-D的平面角
          解答:解:(Ⅰ)取PC的中點(diǎn)O,連接OF、OE.
          ∴FO∥DC,且FO=DC
          ∴FO∥AE
          又E是AB的中點(diǎn).且AB=DC.
          ∴FO=AE.
          ∴四邊形AEOF是平行四邊形.
          ∴AF∥OE又OE?平面PEC,AF?平面PEC
          ∴AF∥平面PEC
          (Ⅱ)連接AC
          ∵PA⊥平面ABCD,∴∠PCA是直線PC與平面ABCD所成的角
          在Rt△PAC中,即直線PC與平面ABCD所成的角正切為
          (Ⅲ)作AM⊥CE,交CE的延長線于M.連接PM,
          由三垂線定理,得PM⊥CE
          ∴∠PMA是二面角P-EC-D的平面角
          由△AME∽△CBE,可得,

          ∴二面角P一EC一D的正切為
          點(diǎn)評:解決成立問題的關(guān)鍵是將空間角找出并且把空間問題轉(zhuǎn)化為平面問題,步驟是一作角二證角三求角四結(jié)論.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知在四棱錐P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
          PA=AD=1,AB=2,E、F分別是AB、PD的中點(diǎn).
          (Ⅰ)求證:AF∥平面PEC;
          (Ⅱ)求PC與平面ABCD所成角的正切值;
          (Ⅲ)求二面角P-EC-D的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011年江西省高二下學(xué)期第二次月考數(shù)學(xué)理卷 題型:解答題

          (13分)已知在四棱錐P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分別是AB、PD的中點(diǎn)。

          (Ⅰ)求證:AF∥平面PEC;

          (Ⅱ)求PC與平面ABCD所成角的正切值;

          (Ⅲ)求二面角P一EC一D的正切值。

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知在四棱錐P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分別是AB、PD的中點(diǎn)。

          (Ⅰ)求證:AF∥平面PEC;

          (Ⅱ)求PC與平面ABCD所成角的正切值;

          (Ⅲ)求二面角P一EC一D的正切值。

           


          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (13分)已知在四棱錐P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分別是AB、PD的中點(diǎn)。

          (Ⅰ)求證:AF∥平面PEC;

          (Ⅱ)求PC與平面ABCD所成角的正切值;

          (Ⅲ)求二面角P一EC一D的正切值。

          查看答案和解析>>

          同步練習(xí)冊答案