日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中AB兩點在⊙O上,A,BC,D恰是一個正方形的四個頂點.根據(jù)規(guī)劃要求,在A,B,C,D四點處安裝四盞照明設備,從圓心O點出發(fā),在地下鋪設4條到A,B,CD四點線路OA,OB,OC,OD.

          1)若正方形邊長為10米,求廣場的面積;

          2)求鋪設的4條線路OAOB,OC,OD總長度的最小值.

          【答案】1100(平方米)(2(米)

          【解析】

          1)連接AB,廣場面積等于正方形面積加上弓形面積,計算得到答案.

          2)過OOKCD,垂足為K,過OOHAD(或其延長線),垂足為H,設∠OADθ0θ),OD,計算得到答案.

          1)連接AB,∵AB10,∴正方形ABCD的面積為100,

          OAOB10,∴△AOB為正三角形,則

          而圓的面積為100π,∴扇形AOB的面積為

          又三角形AOB的面積為.∴弓形面積為

          則廣場面積為100(平方米);

          2)過OOKCD,垂足為K,過OOHAD(或其延長線),垂足為H,

          設∠OADθ0θ),則OH10sinθ,AH10cosθ

          DH|ADAH||2OHAH||20sinθ10cosθ|,

          OD.

          ∴當θ時,.

          4條線路OA,OB,OC,OD總長度的最小值為(米).

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知四邊形ABCD是邊長為2的菱形,∠ABC=60°,平面AEFC⊥平面ABCD,EFAC,AE=AB,AC=2EF.

          1)求證:平面BED⊥平面AEFC;

          2)若四邊形AEFC為直角梯形,且EAAC,求二面角B-FC-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4-4:坐標系與參數(shù)方程

          在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標系,且曲線的極坐標方程為.

          (1)寫出直線的普通方程與曲線的直角坐標方程;

          (2)設直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側(cè)面上,從的路徑中,最短路徑的長度為( )

          A. B. C. D. 2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)若,求曲線處的切線方程;

          (Ⅱ)若,求證:

          (Ⅲ)當時,若關(guān)于的不等式的解集為,且,,求的取值范圍(用表示).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

          (Ⅰ)求直線的直角坐標方程與曲線的普通方程;

          (Ⅱ)已知點設直線與曲線相交于兩點,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),.

          (1)討論的單調(diào)性;

          (2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點.如果函數(shù)存在不動點,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四棱錐的底面是菱形,,平面平面,是等邊三角形.

          1)求證:

          2)若的面積為,求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系中,直線的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

          1)若,求直線與曲線的交點的直角坐標;

          2)若點在曲線上,且到直線距離的最大值為,求直線的斜率.

          查看答案和解析>>

          同步練習冊答案