日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分10分)在中,角A,B,C的對邊分別是,已知向量,,且。

          (Ⅰ)求角A的大小;

          (Ⅱ)若,求面積的最大值。

           

          【答案】

          (Ⅰ)(Ⅱ)

          【解析】

          試題分析:(Ⅰ)因為,所以,由正弦定理

          ,

          所以.                                              ……3分

          ,所以,

          因為,所以,

          所以,又,所以.                                  ……5分

          (Ⅱ)由余弦定理得

          所以,所以

          當且僅當時,上式取“=”,                                      ……8分

          所以面積為,

          所以面積的最大值為.                                         ……10分

          考點:本小題主要考查向量的數(shù)量積運算、二倍角公式、正弦定理、余弦定理、輔助角公式及三角函數(shù)的圖象和性質(zhì),考查學生綜合運用公式解決問題的能力.

          點評:三角函數(shù)的圖象和性質(zhì)是高考中必考的內(nèi)容,此外二倍角公式、輔助角公式和正弦定理和余弦定理經(jīng)常綜合考查.

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
          A.[選修4-1:幾何證明選講]
          已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
          求證:AD的延長線平分∠CDE
          B.[選修4-2:矩陣與變換]
          已知矩陣A=
          12
          -14

          (1)求A的逆矩陣A-1;
          (2)求A的特征值和特征向量.
          C.[選修4-4:坐標系與參數(shù)方程]
          已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數(shù)方程為
          x=
          1
          2
          t
          y=
          3
          2
          t+1
          (t為參數(shù)),求直線l被曲線C截得的線段長度.
          D.[選修4-5,不等式選講](本小題滿分10分)
          設a,b,c均為正實數(shù),求證:
          1
          2a
          +
          1
          2b
          +
          1
          2c
          1
          b+c
          +
          1
          c+a
          +
          1
          a+b

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
          若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
          (1)、選修4-1:幾何證明選講
          如圖,∠PAQ是直角,圓O與AP相切于點T,與AQ相交于兩點B,C.求證:BT平分∠OBA
          (2)選修4-2:矩陣與變換(本小題滿分10分)
          若點A(2,2)在矩陣M=
          cosα-sinα
          sinαcosα
          對應變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣
          (3)選修4-2:矩陣與變換(本小題滿分10分)
          在極坐標系中,A為曲線ρ2+2ρcosθ-3=0上的動點,B為直線ρcosθ+ρsinθ-7=0上的動點,求AB的最小值.
          (4)選修4-5:不等式選講(本小題滿分10分)
          已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          必做題:(本小題滿分10分,請在答題指定區(qū)域內(nèi)作答,解答時應寫出文字說明、證明過程或演算步驟)
          已知an(n∈N*)是二項式(2+x)n的展開式中x的一次項的系數(shù).
          (Ⅰ)求an
          (Ⅱ)是否存在等差數(shù)列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對一切正整數(shù)n都成立?并證明你的結論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本小題滿分10分)數(shù)學的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請您設計一個算法,找出大于100,小于1000的所有“水仙花數(shù)”.
          (1)用自然語言寫出算法;
          (2)畫出流程圖.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (選修4-2:矩陣與變換)(本小題滿分10分)
          求矩陣A=
          32
          21
          的逆矩陣.

          查看答案和解析>>

          同步練習冊答案