日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
          (1)若a=0,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
          (2)討論函數(shù)f(x)的單調(diào)性.
          (1)2x-y-4=0,(2)當(dāng)a=0時(shí),f(x)的單調(diào)增區(qū)間是(0,2),單調(diào)減區(qū)間是(2,+∞);
          當(dāng)0<a<時(shí),f(x)的單調(diào)增區(qū)間是(0,2)和(,+∞),減區(qū)間為(2,);當(dāng)a=時(shí),f(x)的單調(diào)增區(qū)間是(0,+∞);當(dāng)a>時(shí),f(x)的單調(diào)增區(qū)間是(0,)和(2,+∞),減區(qū)間為(,2)

          試題分析:(1)利用導(dǎo)數(shù)集合意義,在處導(dǎo)數(shù)值等于該點(diǎn)處切線的斜率,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041503481723.png" style="vertical-align:middle;" />,所以
          f ′(1)=2, 又切點(diǎn)為(1,-2),所以所求切線方程為y+2=2(x-1),(2)函數(shù)f(x)的單調(diào)性之所以要討論,就是由于導(dǎo)函數(shù)為零時(shí)根的不確定性.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240415035281002.png" style="vertical-align:middle;" />,所以當(dāng)a=0時(shí),方程在定義域內(nèi)只有一根;當(dāng)時(shí),需討論兩根的大小,三種情況0<a<,a=,及a>需一一討論.解題過程中,最易忽視的是兩根相等的情況;答題時(shí)最易出錯(cuò)的是將兩個(gè)單調(diào)性相同的不連續(xù)區(qū)間用“并集”“或”合并寫.
          試題解析:解(1)當(dāng)a=0時(shí),f(x)=-2x+4lnx,
          從而,其中x>0.                         2分
          所以f′(1)=2.
          又切點(diǎn)為(1,-2),
          所以所求切線方程為y+2=2(x-1),即2x-y-4=0.      4分
          (2)因?yàn)閒(x)=ax2-(4a+2)x+4lnx,
          所以,其中x>0.
          ①當(dāng)a=0時(shí),,x>0.
          由f′(x)>0得,0<x<2,所以函數(shù)f(x)的單調(diào)增區(qū)間是(0,2);單調(diào)減區(qū)間是(2,+∞);    6分
          ②當(dāng)0<a<時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041503356327.png" style="vertical-align:middle;" />>2,由f ′(x)>0,得x<2或x>
          所以函數(shù)f(x)的單調(diào)增區(qū)間是(0,2)和(,+∞);單調(diào)減區(qū)間為(2,);      8分
          ③當(dāng)a=時(shí),,且僅在x=2時(shí),f ′(x)=0,
          所以函數(shù)f(x)的單調(diào)增區(qū)間是(0,+∞);
          ④當(dāng)a>時(shí),因0<<2,由f ′(x)>0,得0<x<或x>2,
          所以函數(shù)f(x)的單調(diào)增區(qū)間是(0,)和(2,+∞);單調(diào)減區(qū)間為(,2).
          綜上,
          當(dāng)a=0時(shí),f(x)的單調(diào)增區(qū)間是(0,2),單調(diào)減區(qū)間是(2,+∞);
          當(dāng)0<a<時(shí),f(x)的單調(diào)增區(qū)間是(0,2)和(,+∞),減區(qū)間為(2,);
          當(dāng)a=時(shí),f(x)的單調(diào)增區(qū)間是(0,+∞);
          當(dāng)a>時(shí),f(x)的單調(diào)增區(qū)間是(0,)和(2,+∞),減區(qū)間為(,2).   10分
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在邊長為的正方形鐵皮的四切去相等的正方形,再把它的邊沿虛線折起,做成一個(gè)無蓋的方底箱子,箱底的邊長是多少時(shí),箱子的容積最大?最大容積是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          過點(diǎn)P(-1,2)且與曲線y=3x2-4x+2在點(diǎn)M(1,1)處的切線平行的直線方程是________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          設(shè),若f (x)在x=1處的切線與直線垂直,則實(shí)數(shù)a的值為 

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          ,則(    )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          將一個(gè)邊長分別為a、b(0<a<b)的長方形的四個(gè)角切去四個(gè)相同的正方形,然后折成一個(gè)無蓋的長方體形的盒子.若這個(gè)長方體的外接球的體積存在最小值,則的取值范圍是________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          若曲線f(x)=ax3+ln x存在垂直于y軸的切線,則實(shí)數(shù)a的取值范圍是
          ________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          求曲線yx3在點(diǎn)(3,27)處的切線與兩坐標(biāo)軸所圍成的三角形的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知函數(shù),則曲線在點(diǎn)處的切線方程為___________.

          查看答案和解析>>

          同步練習(xí)冊答案