【題目】已知拋物線,過(guò)點(diǎn)
的直線
交拋物線
于
兩點(diǎn).
(1)若直線平行于
軸,
,求拋物線
的方程;
(2)對(duì)于(1)條件下的拋物線,當(dāng)直線
的斜率變化時(shí),證明
.
【答案】(1)
(2)證明見(jiàn)解析
【解析】
(1)由直線平行于
軸可知
是以
為頂點(diǎn)的等腰三角形,聯(lián)立直線
與拋物線的方程并利用三角形面積公式列方程,解得
的值,即得拋物線
的方程;
(2)聯(lián)立直線與拋物線的方程,利用根與系數(shù)的關(guān)系及斜率公式得到
,即得
,利用三角形面積公式得到線段比,即得證.
解:(1)當(dāng)直線平行于
軸時(shí),直線
的方程為
是以
為頂點(diǎn)的等腰三角形,
聯(lián)立方程,得消去
得
,得
.
所以,解得
,
所以拋物線的方程為
.
(2)欲證,
只需證.
由題意可知直線的斜率
存在,
故可設(shè)直線的方程為
,
聯(lián)立方程,得
消去,得
,
則
所以直線的斜率
,
直線的斜率
,
,
所以直線與
的傾斜角互補(bǔ),
所以.
又,
,
所以,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年1月10日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學(xué)家們便開始了病毒疫苗的研究過(guò)程.但是類似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動(dòng)物試驗(yàn).已知一個(gè)科研團(tuán)隊(duì)用小白鼠做接種試驗(yàn),檢測(cè)接種疫苗后是否出現(xiàn)抗體.試驗(yàn)設(shè)計(jì)是:每天接種一次,3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無(wú)關(guān).
(1)求一個(gè)接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;
(2)已知每天接種一次花費(fèi)100元,現(xiàn)有以下兩種試驗(yàn)方案:
①若在一個(gè)接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗(yàn),進(jìn)行下一接種周期,試驗(yàn)持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元;
②若在一個(gè)接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗(yàn),已知試驗(yàn)至多持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元.
比較隨機(jī)變量和
的數(shù)學(xué)期望的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)
的值;
(2)若在定義域內(nèi)有唯一的零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),
分別是橢圓
的左頂點(diǎn)和上頂點(diǎn),
為其右焦點(diǎn),
,且該橢圓的離心率為
;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)為橢圓上的一動(dòng)點(diǎn),且不與橢圓頂點(diǎn)重合,點(diǎn)
為直線
與
軸的交點(diǎn),線段
的中垂線與
軸交于點(diǎn)
,若直線
斜率為
,直線
的斜率為
,且
(
為坐標(biāo)原點(diǎn)),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐中,
,
,
,
.有以下結(jié)論:①三棱錐
的表面積為
;②三棱錐
的內(nèi)切球的半徑
;③點(diǎn)
到平面
的距離為
;其中正確的是( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直三棱柱中,
,且
,點(diǎn)D,E,F分別為
,
,BC中點(diǎn).
(1)求證:平面
;
(2)若,求三棱錐
的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
.(
為參數(shù))以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)
的極坐標(biāo)為
,直線
的極坐標(biāo)方程為
.
(1)求的直角坐標(biāo)和 l的直角坐標(biāo)方程;
(2)把曲線上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的
倍,縱坐標(biāo)伸長(zhǎng)為原來(lái)的
倍,得到曲線
,
為
上動(dòng)點(diǎn),求
中點(diǎn)
到直線
距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)和函數(shù)
.
(1)若曲線在
處的切線過(guò)點(diǎn)
,求實(shí)數(shù)
的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若不等式對(duì)于任意的
恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,
分別是棱
上的點(diǎn)(點(diǎn)
不同于點(diǎn)
),且
,
為棱
上的點(diǎn),且
.
求證:(1)平面平面
;
(2)平面
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com