日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知三次函數(shù)f(x)=x3+ax2+bx+c在x=1和x=-1時取極值,且f(-2)=-4.
          (1)求函數(shù)f(x)的表達式; 
          (2)求函數(shù)的單調(diào)區(qū)間和極值;
          (3)求函數(shù)在區(qū)間[-2,5]的最值.
          分析:(1)三次函數(shù)f(x)=x3+ax2+bx+c在x=1和x=-1時取極值,說明方程f′(x)=0的兩個根為1和-1,求出a與b,再代入f(-2)=-4,求出c值;
          (2)由(1)求出f(x)的解析式,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出極值;
          (3)由(2)已知f(x)的極大值和極小值,把端點值f(-2)和f(5),從而求出最值;
          解答:解:(1)∵三次函數(shù)f(x)=x3+ax2+bx+c在x=1和x=-1時取極值,
          ∴f′(x)=3x2+2ax+b,
          f′(1)=0
          f′(-1)=0
          可得
          3+2a+b=0
          3-2a+b=0
          解得
          a=0
          b=-3

          ∴f(x)=x3-3x+c,∵f(-2)=-4,可得(-2)3-3×(-2)+c=0,解得c=2,
          ∴f(x)=x3-3x+2;
          (2)∵f′(x)=3x2-3=3(x+1)(x-1),
          若f′(x)>0即x>1或x<-1,f(x)為增函數(shù),
          若f′(x)<0即-1<x<1,f(x)為減函數(shù),
          f(x)在x=-1處取得極大值,在x=1處取得極小值,
          f(x)極大值=f(-1)=-1+3+2=4,f(x)極小值=f(1)=1-3+2=0;
          (3)∵求函數(shù)在區(qū)間[-2,5]的最值,
          已知f(x)極大值=4,f(x)極小值=0,
          f(-2)=(-2)3-3×(-2)+2=-8+6+2=0;
          f(5)=53-3×5+2=112,
          ∴f(x)的最大值為112,f(x)的最小值為0;
          點評:此題主要考查函數(shù)在某點的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及掌握不等式的解法.這是高考必考的考點;
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知三次函數(shù)f(x)=ax3+bx2+cx(a,b,c∈R).
          (Ⅰ)若函數(shù)f(x)過點(-1,2)且在點(1,f(1))處的切線方程為y+2=0,求函數(shù)f(x)的解析式;
          (Ⅱ)在(Ⅰ)的條件下,若對于區(qū)間[-3,2]上任意兩個自變量的值x1,x2都有|f(x1)-f(x2)|≤t,求實數(shù)t的最小值;
          (Ⅲ)當-1≤x≤1時,|f′(x)|≤1,試求a的最大值,并求a取得最大值時f(x)的表達式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          19、已知三次函數(shù)f(x)=x3+ax2+bx+c在x=1和x=-1時取極值,且f(-2)=-4.
          (I)求函數(shù)y=f(x)的表達式;
          (II)求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
          (Ⅲ)若函數(shù)g(x)=f(x-m)+4m(m>0)在區(qū)間[m-3,n]上的值域為[-4,16],試求m、n應(yīng)滿足的條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知三次函數(shù)f(x)=ax3+bx2+cx+d,(a,b,c,d∈R),命題p:y=f(x)是R上的單調(diào)函數(shù);命題q:y=f(x)的圖象與x軸恰有一個交點.則p是q的( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知三次函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則
          f′(-3)f′(1)
          =
           

          查看答案和解析>>

          同步練習(xí)冊答案