已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,焦距為
,且經(jīng)過(guò)點(diǎn)
,直線
交橢圓于不同的兩點(diǎn)A,B.
(1)求的取值范圍;,
(2)若直線不經(jīng)過(guò)點(diǎn)
,求證:直線
的斜率互為相反數(shù).
(1);(2)證明過(guò)程詳見(jiàn)解析.
解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程、韋達(dá)定理等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.第一問(wèn),用待定系數(shù)法,先設(shè)出橢圓方程,根據(jù)焦距和橢圓過(guò),解出
,得到橢圓方程,由于直線與橢圓有2個(gè)交點(diǎn),所以聯(lián)立得到的關(guān)于
的方程有2個(gè)不相等實(shí)根,所以利用
求解;第二問(wèn),分析題意得只需證明
,設(shè)出
點(diǎn)坐標(biāo),利用第一問(wèn)得出的關(guān)于
的方程找到
,將
化簡(jiǎn),把
的結(jié)果代入即可得證.
試題解析:(1)設(shè)橢圓的方程為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/5/q6jjx1.png" style="vertical-align:middle;" />,所以
,
又因?yàn)闄E圓過(guò)點(diǎn),所以
,解得
,故橢圓方程為
. 3分
將代入
并整理得
,
,解得
. 6分
(2)設(shè)直線的斜率分別為
和
,只要證明
.
設(shè),則
,
. 9分
,
分子
所以直線的斜率互為相反數(shù). 12分
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程;2.韋達(dá)定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知圓
和圓
.
(1)若直線過(guò)點(diǎn)
,且被圓
截得的弦長(zhǎng)為
,求直線
的方程;
(2)設(shè)為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)
的無(wú)窮多對(duì)互相垂直的直線
和
,它們分別與圓
和圓
相交,且直線
被圓
截得的弦長(zhǎng)與直線
被圓
截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知經(jīng)過(guò)點(diǎn)A(-4,0)的動(dòng)直線l與拋物線G:相交于B、C,當(dāng)直線l的斜率是
時(shí),
.
(Ⅰ)求拋物線G的方程;
(Ⅱ)設(shè)線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的左頂點(diǎn)為
,
是橢圓
上異于點(diǎn)
的任意一點(diǎn),點(diǎn)
與點(diǎn)
關(guān)于點(diǎn)
對(duì)稱.
(1)若點(diǎn)的坐標(biāo)為
,求
的值;
(2)若橢圓上存在點(diǎn)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的兩個(gè)焦點(diǎn)
和上下兩個(gè)頂點(diǎn)
是一個(gè)邊長(zhǎng)為2且∠F1B1F2為
的菱形的四個(gè)頂點(diǎn).
(1)求橢圓的方程;
(2)過(guò)右焦點(diǎn)F2 ,斜率為(
)的直線
與橢圓
相交于
兩點(diǎn),A為橢圓的右頂點(diǎn),直線
、
分別交直線
于點(diǎn)
、
,線段
的中點(diǎn)為
,記直線
的斜率為
.求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的左焦點(diǎn)為
,離心率為
,過(guò)點(diǎn)
且與
軸垂直的直線被橢圓截得的線段長(zhǎng)為
.
(1) 求橢圓方程.
(2) 過(guò)點(diǎn)的直線
與橢圓交于不同的兩點(diǎn)
,當(dāng)
面積最大時(shí),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,
、
分別是橢圓
的頂點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線交橢圓于
、
兩點(diǎn),其中
在第一象限.過(guò)
作
軸的垂線,垂足為
.連接
,并延長(zhǎng)交橢圓于點(diǎn)
.設(shè)直線
的斜率為
.
(Ⅰ)當(dāng)直線平分線段
時(shí),求
的值;
(Ⅱ)當(dāng)時(shí),求點(diǎn)
到直線
的距離;
(Ⅲ)對(duì)任意,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:+
=1(a>b>0)的離心率為
,過(guò)右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為
.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有=
+
成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,曲線
的參數(shù)方程為
,
以原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
⑴ 求曲線的普通方程和曲線
的直角坐標(biāo)方程;
⑵ 當(dāng)時(shí),曲線
和
相交于
、
兩點(diǎn),求以線段
為直徑的圓的直角坐標(biāo)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com