日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為的橢圓E的一個(gè)焦點(diǎn)為圓的圓心.
          ⑴求橢圓E的方程;
          ⑵設(shè)P是橢圓E上一點(diǎn),過(guò)P作兩條斜率之積為的直線(xiàn),當(dāng)直線(xiàn)都與圓相切時(shí),求P點(diǎn)坐標(biāo).

          (1);(2)

          解析試題分析:(1)圓心坐標(biāo)是已知的,故橢圓的焦點(diǎn)是已知的,從而半焦距已知了,又有離心率,故半長(zhǎng)軸長(zhǎng)也能求出,從而求出,而根據(jù)題意,橢圓方程是標(biāo)準(zhǔn)方程,可其方程易得;(2)設(shè)P點(diǎn)坐標(biāo)為,再設(shè)一條切線(xiàn)的斜率為,則另一條切線(xiàn)的斜率為,三個(gè)未知數(shù)需要三個(gè)方程,點(diǎn)P在橢圓上,一個(gè)等式,兩條直線(xiàn)都圓的切線(xiàn),利用圓心到切線(xiàn)的距離等于圓的半徑又得到兩個(gè)等式,三個(gè)等量關(guān)系,三個(gè)未知數(shù)理論上可解了,當(dāng)然具體解題時(shí),可設(shè)切線(xiàn)斜率為,則點(diǎn)斜率式寫(xiě)出直線(xiàn)方程,利用圓心到切線(xiàn)距離等于圓半徑得出關(guān)于的方程,而是這個(gè)方程的兩解,由韋達(dá)定理得,這個(gè)結(jié)果又是,就列出了關(guān)于P點(diǎn)坐標(biāo)的一個(gè)方程,再由P點(diǎn)在橢圓上,可解出P點(diǎn)坐標(biāo).
          試題解析:(1)圓的標(biāo)準(zhǔn)方程為,圓心為,所以,又,,,而據(jù)題意橢圓的方程是標(biāo)準(zhǔn)方程,故其方程為.        4分
          (2)設(shè),得
          ,依題意的距離為
          整理得同理

          是方程的兩實(shí)根    10分
                 12分
                 14分
               16分
          考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)圓的切線(xiàn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知橢圓的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,橢圓上一點(diǎn)M
          滿(mǎn)足.
          (1)求橢圓的方程;
          (2)若直線(xiàn)L:y=與橢圓恒有不同交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點(diǎn),直線(xiàn):x=-將線(xiàn)段F1F2分成兩段,其長(zhǎng)度之比為1:3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線(xiàn)段AB的中垂線(xiàn)與C交于P,Q兩點(diǎn),線(xiàn)段AB的中點(diǎn)M在直線(xiàn)l上.

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線(xiàn)被直線(xiàn)截得的弦長(zhǎng)為,求拋物線(xiàn)的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在平面直角坐標(biāo)系xOy中,直線(xiàn)l與拋物線(xiàn)y2=4x相交于不同的A、B兩點(diǎn).
          (1)如果直線(xiàn)l過(guò)拋物線(xiàn)的焦點(diǎn),求·的值;
          (2)如果·=-4,證明直線(xiàn)l必過(guò)一定點(diǎn),并求出該定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知圓,若焦點(diǎn)在軸上的橢圓 過(guò)點(diǎn),且其長(zhǎng)軸長(zhǎng)等于圓的直徑.
          (1)求橢圓的方程;
          (2)過(guò)點(diǎn)作兩條互相垂直的直線(xiàn)與圓交于、兩點(diǎn),交橢圓于另一點(diǎn),設(shè)直線(xiàn)的斜率為,求弦長(zhǎng);
          (3)求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知雙曲線(xiàn)的離心率為,右準(zhǔn)線(xiàn)方程為,
          (1)求雙曲線(xiàn)C的方程;
          (2)已知直線(xiàn)與雙曲線(xiàn)C交于不同的兩點(diǎn)A,B,且線(xiàn)段AB的中點(diǎn)在以雙曲線(xiàn)C的實(shí)軸長(zhǎng)為直徑的圓上,求m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知橢圓C:的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.
          (1)求橢圓的方程;
          (2)若過(guò)點(diǎn)(2,0)的直線(xiàn)與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿(mǎn)足為坐標(biāo)原點(diǎn)),當(dāng) 時(shí),求實(shí)數(shù)取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知橢圓經(jīng)過(guò)點(diǎn),.
          (Ⅰ)求橢圓的方程;(Ⅱ)設(shè)為橢圓上的動(dòng)點(diǎn),求的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案