日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知.函數(shù).e為自然對數(shù)的底

          (1)當(dāng)時取得最小值,求的值;

          (2)令,求函數(shù)在點(diǎn)P處的切線方程

           

          【答案】

          (1)

          ………6分

          (2)…………12分

           

          【解析】略

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:山東省臨沂市2012屆高三上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044

          已知函數(shù)e為自然對數(shù)的底數(shù)).

          (1)求函數(shù)F(x)=f(x)-g(x)的單調(diào)區(qū)間,若F(x)有最值,請求其最值;

          (2)是否存在正常數(shù)a,使的圖象有且只有一個公共點(diǎn),且在該公共點(diǎn)處有共同的切線?若存在,求出a的值,以及公共點(diǎn)坐標(biāo)和公切線方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省成都市石室中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知,e為自然對數(shù)lnx的底數(shù).
          (Ⅰ)若函數(shù)h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍;
          (Ⅱ)當(dāng)0<α<β時,求證:;
          (Ⅲ)求f(x)-x的最大值,并證明當(dāng)n>2,n∈N*時,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年四川省成都七中高考數(shù)學(xué)模擬試卷2(理科)(解析版) 題型:解答題

          已知,e為自然對數(shù)lnx的底數(shù).
          (Ⅰ)若函數(shù)h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍;
          (Ⅱ)當(dāng)0<α<β時,求證:;
          (Ⅲ)求f(x)-x的最大值,并證明當(dāng)n>2,n∈N*時,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省成都市模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.

          【解析】第一問中,當(dāng)時,.結(jié)合表格和導(dǎo)數(shù)的知識判定單調(diào)性和極值,進(jìn)而得到最值。

          第二問中,∵,,      

          ∴原不等式等價于:,

          , 亦即

          分離參數(shù)的思想求解參數(shù)的范圍

          解:(Ⅰ)當(dāng)時,

          當(dāng)上變化時,的變化情況如下表:

           

           

          1/e

          時,,

          (Ⅱ)∵,,      

          ∴原不等式等價于:,

          , 亦即

          ∴對于任意的,原不等式恒成立,等價于恒成立,

          ∵對于任意的時, (當(dāng)且僅當(dāng)時取等號).

          ∴只需,即,解之得.

          因此,的取值范圍是

           

          查看答案和解析>>

          同步練習(xí)冊答案