日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)圓心為C1的方程為(x-5)2+(y-3)2=9,圓心為C2的方程為x2+y2-4x+2y-9=0,則兩圓的圓心距等于(  )
          A、5
          B、25
          C、10
          D、2
          5
          分析:由圓C1的方程找出圓心C1的坐標(biāo),把圓C2的方程為x2+y2-4x+2y-9=0化為標(biāo)準(zhǔn)方程后,找出圓心為C2的坐標(biāo),然后利用兩點間的距離公式即可求出兩圓的圓心距.
          解答:解:由圓C1的方程為(x-5)2+(y-3)2=9,將圓C2的方程為x2+y2-4x+2y-9=0化為標(biāo)準(zhǔn)方程得:(x-2)2+(y+1)2=14,
          到圓心C1的坐標(biāo)為(5,3),圓心C2的坐標(biāo)為(2,-1),
          則兩圓的圓心距d=
          (5-2)2+(3+1)2
          =5.
          故選A.
          點評:此題考查學(xué)生會將圓的一般式方程化為標(biāo)準(zhǔn)式方程,靈活運用兩點間的距離公式化簡求值,是一道綜合題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)圓C1的方程為(x+2)2+(y-3m-2)2=4m2,直線l的方程為y=x+m+2.
          (1)若m=1,求圓C1上的點到直線l距離的最小值;
          (2)求C1關(guān)于l對稱的圓C2的方程;
          (3)當(dāng)m變化且m≠0時,求證:C2的圓心在一條定直線上,并求C2所表示的一系列圓的公切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•遼寧)選修4-4:坐標(biāo)系與參數(shù)方程
          在直角坐標(biāo)系xoy中以O(shè)為極點,x軸正半軸為極軸建立坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-
          π
          4
          )=2
          2

          (Ⅰ)求C1與C2交點的極坐標(biāo);
          (Ⅱ)設(shè)P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數(shù)方程為
          x=t3+a
          y=
          b
          2
          t3+1
          (t∈R為參數(shù)),求a,b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)圓心為C1的方程為(x-5)2+(y-3)2=9,圓心為C2的方程為x2+y2-4x+2y-9=0,則圓心距等于

          (  )

          A.5         B.25        C.10              D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:河北省高三下學(xué)期第二次考試數(shù)學(xué)(文) 題型:解答題

          (本題滿分12分)已知橢圓的離心率為,

          直線與以原點為圓心、以橢圓的短半軸長為半徑的圓相切。

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)橢圓的左焦點為F1,右焦點為F2,直線過點F1,且垂直于橢圓的長軸,動直

          垂直于點P,線段PF2的垂直平分線交于點M,求點M的軌跡C2的方程;

          (Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點F2,求四邊形ABCD的面積

          的最小值.

           

          查看答案和解析>>

          同步練習(xí)冊答案