科目: 來源: 題型:
【題目】設拋物線的焦點為
,過點
的直線與拋物線相交于
兩點,與拋物線的準線相交于點
,
,則
與
的面積之比
__________.
【答案】
【解析】
由題意可得拋物線的焦點的坐標為
,準線方程為
。
如圖,設,過A,B分別向拋物線的準線作垂線,垂足分別為E,N,則
,解得
。
把代入拋物線
,解得
。
∴直線AB經(jīng)過點與點
,
故直線AB的方程為,代入拋物線方程解得
。
∴。
在中,
,
∴
∴。答案:
點睛:
在解決與拋物線有關的問題時,要注意拋物線的定義在解題中的應用。拋物線定義有兩種用途:一是當已知曲線是拋物線時,拋物線上的點M滿足定義,它到準線的距離為d,則|MF|=d,可解決有關距離、最值、弦長等問題;二是利用動點滿足的幾何條件符合拋物線的定義,從而得到動點的軌跡是拋物線.
【題型】填空題
【結束】
17
【題目】已知三個內角
所對的邊分別是
,若
.
(1)求角;
(2)若的外接圓半徑為2,求
周長的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在三棱拄中,
側面
,已知
,
,
.
(Ⅰ)求證:平面
;
(Ⅱ)試在棱(不包含端點
)上確定一點
的位置,使得
;
(Ⅲ)在(Ⅱ)的條件下,求和平面
所成角正弦值的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,橢圓W:的焦距與橢圓Ω:
+y2=1的短軸長相等,且W與Ω的長軸長相等,這兩個橢圓的在第一象限的交點為A,直線l經(jīng)過Ω在y軸正半軸上的頂點B且與直線OA(O為坐標原點)垂直,l與Ω的另一個交點為C,l與W交于M,N兩點.
(1)求W的標準方程:
(2)求.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(
是常數(shù)).
(1)若,求函數(shù)
的值域;
(2)若為奇函數(shù),求實數(shù)
.并證明
的圖像始終在
的圖像的下方;
(3)設函數(shù),若對任意
,以
為邊長總可以構成三角形,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某鮮奶店每天購進30瓶鮮牛奶,且當天的利潤y(單位:元)關于當天需求量n(單位:瓶,n∈N)的函數(shù)解析式(n∈N).鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶)繪制出如下的柱形圖(例如:日需求量為25瓶時,頻數(shù)為5):
(1)求這100天的日利潤(單位:元)的平均數(shù);
(2)以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于100元的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】越野汽車輪胎的質量是根據(jù)其正常使用的時間來衡量,使用時間越長,表明質量越好,且使用時間大于或等于6千小時的為優(yōu)質品.現(xiàn)用,
兩種不同型號的汽車輪胎做試驗,各隨機抽取部分產品作為樣本,得到試驗結果的頻率分布直方圖如圖所示,以上述試驗結果中各組的頻率作為相應的概率.
(1)現(xiàn)從大量的,
兩種型號的輪胎中各隨機抽取2件產品,求其中至少有3件是優(yōu)質品的概率;
(2)通過多年統(tǒng)計發(fā)現(xiàn),型輪胎每件產品的利潤
(單位:元)與其使用時間
(單位:千小時)的關系如下表:
使用時間 | |||
每件產品的利潤 | 200 | 400 |
若從大量的型輪胎中隨機抽取兩件,其利潤之和記為
(單位:元),求
的分布列及數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】自2019年春季以來,在非洲豬瘟、環(huán)保禁養(yǎng)、上行周期等因素形成的共振條件下,豬肉價格連續(xù)暴漲.某養(yǎng)豬企業(yè)為了抓住契機,決定擴大再生產,根據(jù)以往的養(yǎng)豬經(jīng)驗預估:在近期的一個養(yǎng)豬周期內,每養(yǎng)百頭豬
,所需固定成本為20萬元,其它為變動成本:每養(yǎng)1百頭豬,需要成本14萬元,根據(jù)市場預測,銷售收入
(萬元)與
(百頭)滿足如下的函數(shù)關系:
(注:一個養(yǎng)豬周期內的總利潤
(萬元)=銷售收入-固定成本-變動成本).
(1)試把總利潤(萬元)表示成變量
(百頭)的函數(shù);
(2)當(百頭)為何值時,該企業(yè)所獲得的利潤最大,并求出最大利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】市某機構為了調查該市市民對我國申辦
年足球世界杯的態(tài)度,隨機選取了
位市民進行調查,調查結果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
男性市民 | |||
女性市民 | |||
合計 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(i)能否在犯錯誤的概率不超過的前提下認為支持申辦足球世界杯與性別有關;
(ii)已知在被調查的支持申辦足球世界杯的男性市民中有位退休老人,其中
位是教師,現(xiàn)從這
位退休老人中隨機抽取
人,求至多有
位老師的概率.
附:,其中
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知三個點A(2,1),B(3,2),D(-1,4).
(1)求證:⊥
;
(2)要使四邊形ABCD為矩形,求點C的坐標,并求矩形ABCD兩對角線所夾銳角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com