科目: 來源: 題型:
【題目】在直角坐標系中,直線
的參數(shù)方程為
(t為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).設
與
的交點為
,當
變化時,
的軌跡為曲線
(1)寫出的普通方程;
(2)以坐標原點為極點,軸正半軸為極軸建立極坐標系,設
,
為
與
的交點,求
的極徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標為(0,1).當m變化時,解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD.
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(1)求六月份這種酸奶一天的需求量不超過300瓶的概率,;
(2)設六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出
的所有可能值,并估計
大于零的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,直線
的參數(shù)方程為
(t為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).設
與
的交點為
,當
變化時,
的軌跡為曲線
(1)寫出的普通方程;
(2)以坐標原點為極點,軸正半軸為極軸建立極坐標系,設
,
為
與
的交點,求
的極徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為了確定下一年度投入某種產(chǎn)品的宣傳費用,需了解年宣傳費(單位:萬元)對年銷量
(單位:噸)和年利潤(單位:萬元)的影響對近6年宣傳費
和年銷量
的數(shù)據(jù)做了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年宣傳費 | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量 | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量
(噸)之間近似滿足關系式
,兩邊取對數(shù),即
,令
,即
對上述數(shù)據(jù)作了初步處理,得到相關的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)從表中所給出的6年年銷售量數(shù)據(jù)中任選2年做年銷售量的調研,求所選數(shù)據(jù)中至多有一年年銷售量低于21噸的概率.
(2)根據(jù)所給數(shù)據(jù),求關于
的回歸方程;
(3)若生產(chǎn)該產(chǎn)品的固定成本為200(萬元),且每生產(chǎn)1(噸)產(chǎn)品的生產(chǎn)成本為20(萬元)(總成本=固定成本+生產(chǎn)成本+年宣傳費),銷售收入為(萬元),假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),2019年該公司計劃投入108萬元宣傳費,你認為該決策合理嗎?請說明理由.(其中
為自然對數(shù)的底數(shù),
)
附:對于一組數(shù)據(jù),其回歸直線
中的斜率和截距的最小二乘估計分別為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com