科目: 來源: 題型:
【題目】已知拋物線,過點
的直線與拋物線
相切,設(shè)第一象限的切點為
.
(1)求點的坐標;
(2)若過點的直線
與拋物線
相交于兩點
,圓
是以線段
為直徑的圓過點
,求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】某種設(shè)備隨著使用年限的增加,每年的維護費相應(yīng)增加.現(xiàn)對一批該設(shè)備進行調(diào)查,得到這批設(shè)備自購入使用之日起,前5年平均每臺設(shè)備每年的維護費用大致如表:
年份 | |||||
維護費 |
已知.
(I)求表格中的值;
(II)從這年中隨機抽取兩年,求平均每臺設(shè)備每年的維護費用至少有
年多于
萬元的概率;
(Ⅲ)求關(guān)于
的線性回歸方程;并據(jù)此預(yù)測第幾年開始平均每臺設(shè)備每年的維護費用超過
萬元.
參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:
查看答案和解析>>
科目: 來源: 題型:
【題目】以直角坐標系xOy的坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程是,曲線C2的參數(shù)方程是
(θ為參數(shù)).
(1)寫出曲線C1,C2的普通方程;
(2)設(shè)曲線C1與y軸相交于A,B兩點,點P為曲線C2上任一點,求|PA|2+|PB|2的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在上的函數(shù)
,
單調(diào)遞增,
,若對任意
,存在
,使得
成立,則稱
是
在
上的“追逐函數(shù)”.若
,則下列四個命題:①
是
在
上的“追逐函數(shù)”;②若
是
在
上的“追逐函數(shù)”,則
;③
是
在
上的“追逐函數(shù)”;④當
時,存在
,使得
是
在
上的“追逐函數(shù)”.其中正確命題的個數(shù)為( )
A. ①③B. ②④C. ①④D. ②③
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,對于直線
和點
、
,記
,若
,則稱點
,
被直線l分隔,若曲線C與直線l沒有公共點,且曲線C上存在點
,
被直線l分隔,則稱直線l為曲線C的一條分隔線.
(1)求證:點、
被直線
分隔;
(2)若直線是曲線
的分隔線,求實數(shù)
的取值范圍;
(3)動點M到點的距離與到y軸的距離之積為1,設(shè)點M的軌跡為E,求E的方程,并證明y軸為曲線E的分隔線.
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點
為極點,
軸正半軸為極軸建立極坐標系,
點的極坐標為
,斜率為
的直線
經(jīng)過點
.
(I)求曲線的普通方程和直線
的參數(shù)方程;
(II)設(shè)直線與曲線
相交于
,
兩點,求線段
的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左、右兩個焦點分別為
,P是橢圓上位于第一象限內(nèi)的點,
軸,垂足為Q,
,
,
的面積為
.
(1)求橢圓F的方程:
(2)若M是橢圓上的動點,求的最大值,并求出
取得最大值時M的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角是60°.
其中正確結(jié)論的序號是________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com