科目: 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,
軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程及曲線
的直角坐標(biāo)方程;
(2)設(shè)點,直線
與曲線
相交于兩點
,
,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知、
分別為雙曲線
的左右焦點,左右頂點為
、
,
是雙曲線上任意一點,則分別以線段
、
為直徑的兩圓的位置關(guān)系為( )
A. 相交B. 相切C. 相離D. 以上情況均有可能
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(
,
,
為常數(shù)),當(dāng)
時,
只有一個實根;當(dāng)
時,
只有3個相異實根,現(xiàn)給出下列4個命題:
①和
有一個相同的實根;
②和
有一個相同的實根;
③的任一實根大于
的任一實根;
④的任一實根小于
的任一實根.
其中真命題的序號是______.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知為拋物線
:
的焦點,過
的動直線交拋物線
于
,
兩點.當(dāng)直線與
軸垂直時,
.
(1)求拋物線的方程;
(2)設(shè)直線的斜率為1且與拋物線的準(zhǔn)線
相交于點
,拋物線
上存在點
使得直線
,
,
的斜率成等差數(shù)列,求點
的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線
:
(
,
為參數(shù)).在以坐標(biāo)原點為極點,
軸的正半軸為極軸的極坐標(biāo)系中,曲線
:
.
(1)說明是哪一種曲線,并將
的方程化為極坐標(biāo)方程;
(2)若直線的方程為
,設(shè)
與
的交點為
,
,
與
的交點為
,
,若
的面積為
,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,網(wǎng)上購物已經(jīng)成為人們消費的一種習(xí)慣.假設(shè)某淘寶店的一種裝飾品每月的銷售量 (單位:千件)與銷售價格
(單位:元/件)之間滿足如下的關(guān)系式:
為常數(shù).已知銷售價格為
元/件時,每月可售出
千件.
(1)求實數(shù)的值;
(2)假設(shè)該淘寶店員工工資、辦公等所有的成本折合為每件2元(只考慮銷售出的裝飾品件數(shù)),試確定銷售價格的值,使該店每月銷售裝飾品所獲得的利潤最大.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2cos2·cosB-sin(A-B)sinB+cos(A+C)=-
.
(1)求cos A的值;
(2)若a=4,b=5,求
在
方向上的投影.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購已經(jīng)逐漸融入了人們的生活.在家里面不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會送到自己的家門口,如果近的話當(dāng)天買當(dāng)天就能送到,或者第二天就能送到,所以網(wǎng)購是非常方便的購物方式.某公司組織統(tǒng)計了近五年來該公司網(wǎng)購的人數(shù)(單位:人)與時間
(單位:年)的數(shù)據(jù),列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與
的關(guān)系,請計算相關(guān)系數(shù)
并加以說明(計算結(jié)果精確到0.01).(若
,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式
,參考數(shù)據(jù)
.
(2)建立關(guān)于
的回歸方程,并預(yù)測第六年該公司的網(wǎng)購人數(shù)(計算結(jié)果精確到整數(shù)).
(參考公式:
,
)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在
處的切線方程;
(2)函數(shù)在區(qū)間
上有零點,求
的值;
(3)若不等式對任意正實數(shù)
恒成立,求正整數(shù)
的取值集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com