科目: 來(lái)源: 題型:
【題目】如圖,正方形是某城市的一個(gè)區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,
處為紅綠燈路口,紅綠燈統(tǒng)一設(shè)置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨(dú)立的循環(huán)運(yùn)行.小明上學(xué)需沿街道從
處騎行到
處(不考慮
處的紅綠燈),出發(fā)時(shí)的兩條路線(
)等可能選擇,且總是走最近路線.
(1)請(qǐng)問(wèn)小明上學(xué)的路線有多少種不同可能?
(2)在保證通過(guò)紅綠燈路口用時(shí)最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過(guò)處,且全程不等紅綠燈的概率;
(3)請(qǐng)你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設(shè)計(jì)一條最佳的上學(xué)路線,且應(yīng)盡量避開哪條路線?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某中學(xué)將100名高一新生分成水平相同的甲,乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲,乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出莖葉圖如下,計(jì)成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.
(1)從乙班樣本的20個(gè)個(gè)體中,從不低于86分的成績(jī)中隨機(jī)抽取2個(gè),求抽出的兩個(gè)均“成績(jī)優(yōu)秀”的概率.
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān).
甲班(A方式) | 乙班(B方式) | 總計(jì) | |
成績(jī)優(yōu)秀 | |||
成績(jī)不優(yōu)秀 | |||
總計(jì) |
附:臨界值表
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)(
為自然對(duì)數(shù)的底數(shù))
(1)若曲線在點(diǎn)
處的切線平行于
軸,求
的值;
(2)求函數(shù)的極值;
(3)當(dāng)時(shí),若直線
與曲線
沒(méi)有公共點(diǎn),求
的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是直角梯形且
∥
,側(cè)面
為等邊三角形,且平面
平面
.
(1)求平面與平面
所成的銳二面角的大。
(2)若,且直線
與平面
所成角為
,求
的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)(
是自然對(duì)數(shù)的底數(shù),
).
(1)求函數(shù)的圖象在
處的切線方程;
(2)若函數(shù)在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(3)若函數(shù)在區(qū)間
上有兩個(gè)極值點(diǎn)
,且
恒成立,求滿足條件的
的最小值(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知拋物線上一點(diǎn)
到焦點(diǎn)
的距離
.
(1)求拋物線的方程;
(2)過(guò)點(diǎn)引圓
的兩條切線
,切線
與拋物線
的另一交點(diǎn)分別為
,線段
中點(diǎn)的橫坐標(biāo)記為
,求
的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標(biāo)系與參數(shù)方程
已知曲線,直線
:
(
為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線
的普通方程;
(II)過(guò)曲線上任意一點(diǎn)
作與
夾角為
的直線,交
于點(diǎn)
,
的最大值與最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知定義在R的奇函數(shù)滿足
,且
時(shí),
,下面四種說(shuō)法①
;②函數(shù)
在[-6,-2]上是增函數(shù);③函數(shù)
關(guān)于直線
對(duì)稱;④若
,則關(guān)于
的方程
在[-8,8]上所有根之和為-8,其中正確的序號(hào)__________。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列
的各項(xiàng)均為整數(shù),它們的前
項(xiàng)和分別為
,且
,
.
(1)求數(shù)列,
的通項(xiàng)公式;
(2)求;
(3)是否存在正整數(shù),使得
恰好是數(shù)列
或
中的項(xiàng)?若存在,求出所有滿足條件的
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com