日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 江蘇省泰州市2008-2009學(xué)年高二第一學(xué)期期末聯(lián)考試題

          數(shù)學(xué)(文)

          (考試時間:120分鐘    總分160分)

          命題人:張乃貴(興化周莊高中)       孟  太(姜堰二中)          吳明德(泰興一高)

          審題人:吳衛(wèi)東(省泰興中學(xué))         石志群(泰州市教研室)

          注意事項:

          1. 所有試題的答案均填寫在答題紙上。

          2. 答案寫在試卷上的無效。

          參考公式:線性回歸方程系數(shù)公式 ,

          一、填空題:(本大題共14小題,每小題5分,共70分.請將答案填入答題紙?zhí)羁疹}的相應(yīng)答題線上)

          1.命題“”的否定是    ▲    

          試題詳情

          2.圓錐曲線的離心率為,則圓錐曲線表示拋物線的充要條件是

          試題詳情

              ▲    

          試題詳情

          3.如圖是中央電視臺舉辦的某次挑戰(zhàn)主持人大賽上,七位評委為

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

          (第3題)

          試題詳情

          4.離心率為,長軸長為4,焦點在軸上的橢圓的標(biāo)準(zhǔn)方程為    ▲    

          試題詳情

          5.根據(jù)如圖所示的偽代碼,輸出結(jié)果為    ▲    

          試題詳情

          6.一個算法的流程圖如圖所示,則輸出的結(jié)果s為    ▲    

          試題詳情

          文本框: I←1
While  I<6
Y←2I+1
I←I+2
End  While
Print  Y

           

           

           

           

           

           

           

           

          (第5題)                          (第6題)

          試題詳情

          7.某班級共有學(xué)生52人,現(xiàn)根據(jù)學(xué)生的學(xué)號,用系統(tǒng)抽樣的方法,抽取一個容量為4的樣本.已知3號,29號,42號同學(xué)在樣本中,那么樣本中還有一個同學(xué)的學(xué)號是    ▲    

          試題詳情

          8.某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把名使用血清的人與另外名未用血清的人一年中的感冒記錄作比較,提出假設(shè):“這種血清不能起到預(yù)防感冒的作用”,利用列聯(lián)表計算得,經(jīng)查對臨界值表知.則下列四個結(jié)論中,正確結(jié)論的序號是    ▲    

          試題詳情

          ①     有的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”;

          試題詳情

          ② 有的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”;

          試題詳情

          ③ 有的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”;

          試題詳情

          ④ 有的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”.

          試題詳情

          0

          1

          3

          4

          試題詳情

          試題詳情

          2.2

          試題詳情

          4.3

          試題詳情

          4.8

          試題詳情

          6.7

          試題詳情

          9.觀測兩個變量得如下數(shù)據(jù):

           

           

          試題詳情

          若從散點圖分析,線性相關(guān),

          則回歸直線方程為    ▲    .                                   (第10題)

          試題詳情

          10.如圖所示,一游泳者沿與河岸角的方向向河里直線游了米,然后任意選擇一個方向繼續(xù)直線游下去,則他再游不超過米就能夠回到河岸的概率是  ▲ 

          試題詳情

          11.曲線在點處的切線為l,則切線l與坐標(biāo)軸所圍成的三角形的面積為    ▲    

          試題詳情

          12.已知的頂點分別是雙曲線的左、右焦點,頂點B在雙曲線的左支上,若,則雙曲線的離心率為    ▲    

          試題詳情

          13.已知函數(shù)在區(qū)間上圖象如圖所示,記 ,,,則、之間的大小關(guān)系為    ▲    .(請用連接)

            1. (第13題)

              試題詳情

              二、解答題:(本大題共6小題,共90分.解答應(yīng)寫出文字說明,證明過程或演算步驟)

              15.(本小題滿分14分) 從某校參加2008年全國高中數(shù)學(xué)聯(lián)賽預(yù)賽的450名同學(xué)中,隨機(jī)抽取若干名同學(xué),將他們的成績制成頻率分布表,下面給出了此表中部分?jǐn)?shù)據(jù).

              (1)根據(jù)表中已知數(shù)據(jù),你認(rèn)為在①、②、③處的數(shù)值分別為    ▲    ,    ▲    ,

                  ▲    

              (2)補(bǔ)全在區(qū)間 [70,140] 上的頻率分布直方圖;

              (3)若成績不低于110分的同學(xué)能參加決賽,那么可以估計該校大約有多少學(xué)生能參加決賽?

               

              分組

              頻數(shù)

              頻率

              [70,80)

               

              試題詳情

              0.08

              [80,90)

               

              [90,100)

               

              試題詳情

              0.36

              [100,110)

              16

              試題詳情

              0.32

              [110,120)

               

              試題詳情

              0.08

              [120,130)

              2

              [130,140] 

               

              試題詳情

              0.02

              合計

               

              試題詳情

               

               

               

               

               

               

               

               

               

              試題詳情

              16.(本小題滿分14分)已知命題:方程表示焦點在y軸上的橢圓,命題:雙曲線的離心率,若命題、中有且只有一個為真命題,求實數(shù)的取值范圍.

               

              試題詳情

              17.(本小題滿分15分)

              試題詳情

              (1)已知,求方程有實根的概率;

              試題詳情

              (2)已知,求方程有實根的概率.

              試題詳情

              18.(本小題滿分15分)

              試題詳情

              設(shè)點是以軸為對稱軸,原點為頂點,焦點為(0,1)的拋物線上的任意一點,過點作拋物線的切線交拋物線的準(zhǔn)線于點

              試題詳情

              (1)求拋物線的標(biāo)準(zhǔn)方程;

              試題詳情

              (2)若[1,4],求的取值范圍.

              試題詳情

              19.(本小題滿分16分)一束光線從點出發(fā),經(jīng)直線l:上一點反射后,恰好穿過點

              試題詳情

              (1)求點的坐標(biāo);

              試題詳情

              (2)求以、為焦點且過點的橢圓的方程;

              試題詳情

              (3)設(shè)點是橢圓上除長軸兩端點外的任意一點,試問在軸上是否存在兩定點、,使得直線、的斜率之積為定值?若存在,請求出定值,并求出所有滿足條件的定點、的坐標(biāo);若不存在,請說明理由.

               

              試題詳情

              20.(本小題滿分16分)設(shè)函數(shù) ,其中為非零常數(shù).

              試題詳情

              (1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

              試題詳情

              (2)若,過點作函數(shù)的導(dǎo)函數(shù)的圖象的切線,問這樣的切線可作幾條?并加以證明.

              試題詳情

              (3)當(dāng)時,不等式恒成立,求的取值范圍.

               

              泰州市2008~2009學(xué)年度第一學(xué)期期末聯(lián)考

              試題詳情

               

              一、填空題

              1.; 2.;3.; 4.;5. 11; 6.210; 7.16; 8.③; 9.; 10.; 11.; 12.; 13.;  14.(結(jié)果為不扣分).

              二、解答題

              15.(本小題滿分14分)

              解:(1)50;0.04;0.10. ………… 6分

                     (2)如圖.      ……………… 10分

                     (3)在隨機(jī)抽取的名同學(xué)中有

              出線,.        ………… 13分

              答:在參加的名中大概有63名同學(xué)出線.      

                 ………………… 14分

               

              16.(本小題滿分14分)

              解:真,則有,即.              ------------------4分

              真,則有,即.    ----------------9分

              、中有且只有一個為真命題,則、一真一假.

              ①若真、假,則,且,即; ----------------11分

              ②若假、真,則,且,即3≤.  ----------------13分

              故所求范圍為:或3≤.                        -----------------14分

               

               

               

               

              17.(本小題滿分15分)

              解:(1)設(shè)方程有實根為事件

              數(shù)對共有對.                                   ------------------2分

              若方程有實根,則,即.                 -----------------4分

              則使方程有實根的數(shù)對對.                                                        ------------------6分

              所以方程有實根的概率.                          ------------------8分

              (2)設(shè)方程有實根為事件

              ,所以.           ------------------10分

              方程有實根對應(yīng)區(qū)域為,. -------------------12分

              所以方程有實根的概率.                       ------------------15分

              18.(本小題滿分15分)

              解:(1)  ∴………………4分

              (2)過的切線斜率

              ∴切線方程為

               準(zhǔn)線方程為. …………………8分

              .∴. ………………………………12分

              單調(diào)遞增,∴.                     

              的取值范圍是-.             ………………………………15分

              19.(本小題滿分16分)

              解:(1)設(shè)關(guān)于l的對稱點為,則,解得,,即,故直線的方程為.由,解得.                   ------------------------5分

              (2)因為,根據(jù)橢圓定義,得

              ,所以.又,所以.所以橢圓的方程為.                                     ------------------------10分

              (3)假設(shè)存在兩定點為,使得對于橢圓上任意一點(除長軸兩端點)都有為定值),即?,將代入并整理得…(*).

              由題意,(*)式對任意恒成立,所以,

              解之得

              所以有且只有兩定點,使得為定值.   ---------------16分

              (注:若猜出、點為長軸兩端點并求出定值,給3分)

              20.(本小題滿分16分)

              解:(1).                       ------------------------2分

              因為,令;令.所以函數(shù)的增區(qū)間為,減區(qū)間為.                                  ------------------------5分

              (2)因為,設(shè),則.----------6分

              設(shè)切點為,則切線的斜率為,切線方程為,由點在切線上知,化簡得,即

              所以僅可作一條切線,方程是.              ------------------------9分

              (3),.                   

              上恒成立上的最小值.--------------11分

              ①當(dāng)時,上單調(diào)遞減,上最小值為,不符合題意,故舍去;               ------------------------12分

              ②當(dāng)時,令

              當(dāng)時,即時,函數(shù)在上遞增,的最小值為;解得.                                       ------------------------13分

              當(dāng)時,即時,函數(shù)在上遞減,的最小值為,無解;                                                -----------------------14分

              當(dāng)時,即時,函數(shù)在上遞減、在上遞增,所以的最小值為,無解.                ------------------------15分

              綜上,所求的取值范圍為.                     ------------------------16分