日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2009屆

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

          19.(本小題滿分12分) 

           

          數(shù)學(xué)(文)

          (考試時間:120分鐘  滿分:150分 命題人:邱星明)

          第Ⅰ卷 (選擇題 共60分)

          一、選擇題: 本大題共12小題,每小題5分,共60分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的,把答案填在答題卡對應(yīng)的位置上.

          1.設(shè)集合,集合,則下列結(jié)論正確的是

          試題詳情

                         

          試題詳情

          2.已知數(shù)列為等差數(shù)列,的前項(xiàng)和,,則的值為

          試題詳情

          A.           B.           C.            D.64

          試題詳情

          3.某路段檢查站監(jiān)控錄像顯示,在某時段內(nèi),有1000輛汽車通過該站,現(xiàn)在隨機(jī)抽取其中的200輛汽車進(jìn)行車速分析,分析的結(jié)果表示為如右圖的頻率分布直方圖,則估計(jì)在這一時段內(nèi)通過該站的汽車中速度不小于90km/h 的約有

          A.100輛                   B.200輛  

          C.300輛           D.400輛

          試題詳情

          4.要得到函數(shù)的圖象,只需將函數(shù)的圖象

          試題詳情

          A.向右平移個單位                B.向右平移個單位

          試題詳情

          C.向左平移個單位                D.向左平移個單位

          試題詳情

          5.已知a,b∈R,且a>b,則下列不等式中恒成立的是

          試題詳情

          A.a(chǎn)2>b2               B.() a <()b          C.lg(a-b)>0             D.>1

          試題詳情

          6.已知定義在R上的偶函數(shù)上是減函數(shù),且,則使取值范圍是

          試題詳情

              A.                                                     B.                  

          試題詳情

          C.                                     D.

          試題詳情

          7.“”是“對任意的正數(shù),”的

          A.充分不必要條件             B.必要不充分條件

          C.充要條件                        D.既不充分也不必要條件

          試題詳情

          8.若橢圓的離心率,則的值為  

          試題詳情

          A.         B.     C.     D.

          試題詳情

          9.已知、是平面,是直線,給出下列命題

          試題詳情

          ①若,則

          試題詳情

          ②若,,,則

          試題詳情

          ③如果、n是異面直線,那么相交.

          試題詳情

          ④若,,且,則

          其中正確命題的個數(shù)是

          A.4             B.3               C.2                D.1

          試題詳情

          10.如圖一個空間幾何體的主視圖、側(cè)視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長為1,那么這個幾何體的體積為                                      

                 A.1

          試題詳情

                 B.

          試題詳情

                 C.

          試題詳情

                 D.

          試題詳情

          11.設(shè)函數(shù)的圖象的交點(diǎn)為,則所在的區(qū)間是

          試題詳情

          A.        B.              C.              D.

          試題詳情

          12.已知直線,若直線l2經(jīng)過點(diǎn)(0,5),且的方程為                                                                                          

          試題詳情

                 A.                                  B.

          試題詳情

                 C.                                   D.

           

          第Ⅱ卷 (非選擇題 共90分)

          試題詳情

          二、填空題:本大題共4小題,每小題4分,共16分.注意把解答填入到答題卷上.

          13.已知向量,且共線,則銳角等于       

          試題詳情

          14.當(dāng)時,不等式恒成立,則的取值范圍是         

          試題詳情

          15.直線上的點(diǎn)和圓上的點(diǎn)的最短距離是       

          試題詳情

          16.已知函數(shù):,其中:,記函數(shù)滿足條件:的事件為A,則事件A發(fā)生的概率為______.

          試題詳情

          三、解答題:本大題共6小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.注意把解答填入到答題卷上.

          17.(本小題滿分12分)

          試題詳情

          已知,其中向量=(),=(1,)(

          試題詳情

          (1)求的單調(diào)遞增區(qū)間;

          試題詳情

          (2)在△ABC中,角A、B、C的對邊分別為、,,,求邊長b的值.

           

          試題詳情

          18.(本小題滿分12分)

          將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),求:

          (1)兩數(shù)之和為5的概率;

          (2)兩數(shù)中至少有一個奇數(shù)的概率;

          (3)以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部的概率.

           

          試題詳情

          19.(本小題滿分12分)

          試題詳情

          如右圖所示,四棱錐中,底面為正方

          試題詳情

          形,平面,,,,

          試題詳情

          別為、、的中點(diǎn).

          試題詳情

          (1)求證:平面;

          試題詳情

          (2)求三棱錐的體積.

           

           

           

          試題詳情

           20.(本小題滿分12分)

          試題詳情

          已知數(shù)列滿足

          試題詳情

          (1)求;

          試題詳情

          (2)令,證明:數(shù)列是等比數(shù)列;

          試題詳情

          (3)求數(shù)列的通項(xiàng)公式.

           

           

          試題詳情

          21.(本小題滿分12分)

          試題詳情

          已知函數(shù)

          試題詳情

             (1)若,點(diǎn)P為曲線上的一個動點(diǎn),求以點(diǎn)P為切點(diǎn)的切線斜率取最小值時的切線方程;

          試題詳情

             (2)若函數(shù)上為單調(diào)增函數(shù),求a的取值范圍.

           

           

           

           

           

          試題詳情

          22.(本小題滿分14分)

          試題詳情

                 已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)為(-1,0)和(1,0),橢圓上的點(diǎn)到兩個焦點(diǎn)的距離和為4.

          試題詳情

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          試題詳情

          (2)若直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn).求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

           

           

           

           

           

           

           

           

           

           

           

           

          試題詳情

            1. 19.(本小題滿分12分) 

               

              試題詳情

              一、選擇題: 本大題共12小題,每小題5分,共60分.

              題號

              1

              2

              3

              4

              5

              6

              7

              8

              9

              10

              11

              12

              答案

              C

              B

              C

              D

              B

              C

              A

              D

              C

              D

              B

              B

              二、填空題:本大題共4小題,每小題4分,共16分.

              13.        14.        15.        16.

              三、解答題:本大題共6小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

              17.(本小題滿分12分)

              解:⑴f (x)=?-1=(sin2x,cosx)?(1,2cosx)-1

                        =sin2x+2cos2x-1= sin2x+cos2x=2sin(2x+)               3分

                    由2kπ-≤2x+≤2kπ+ 得kπ-≤x≤kπ+

                    ∴f (x)的遞增區(qū)間為 (k∈Z)                             6分

              ⑵f (A)=2sin(2A)=2  ∴sin(2A)=1

              2A∴A=                                                     9分

              由正弦定理得: .∴邊長b的值為.               12分

              18.(本小題滿分12分)

               解: 將一顆骰子先后拋擲2次,此問題中含有36個等可能基本事件               1分

              (1)記“兩數(shù)之和為5”為事件A,則事件A中含有4個基本事件,

              所以P(A)=

              答:兩數(shù)之和為5的概率為.                                            4分

               (2)記“兩數(shù)中至少有一個奇數(shù)”為事件B,則事件B與“兩數(shù)均為偶數(shù)”為對立事件,

              所以P(B)=;

              答:兩數(shù)中至少有一個奇數(shù)的概率.                                     8分

              (3)基本事件總數(shù)為36,點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部記為事件C,則C包含8個事件,

              所以P(C)=

              答:點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部的概率.                               12分

              19.(本小題滿分12分)

              (1)證法1:如圖,取的中點(diǎn),連接,

              分別為的中點(diǎn),∴

              分別為的中點(diǎn),∴

              四點(diǎn)共面.………………………………………………………………2分

              分別為的中點(diǎn),∴.……………………………………4分

              平面,平面,

              平面.……………………………………………………………………6分

              證法2:∵分別為的中點(diǎn),

              ,.……………………………………………………………2分

              ,∴.又

                                        …………………4分

              ,∴平面平面.               …………………5分

              平面,∴平面. …………………………………………6分

              (2)解:∵平面,平面,∴

              為正方形,∴

              ,∴平面.……………………………………………8分

              ,,∴.……………10分

              ,

              .…………………………………12分

              20.(本小題滿分12分)

              解:(1)∵

                                                   …………………2分

              (2)證明:

                  

                      是以為首項(xiàng),2為公比的等比數(shù)列.        ………………7分

                     (3)由(I)得

                    

                                                       ………………12分

              21.(本小題滿分12分)

              解:(1)設(shè)切線的斜率為k,則           ………2分

                  又,所以所求切線的方程為:                           …………4分

                   即                                                                              …………6分

                 (2), ∵為單調(diào)增函數(shù),∴

                  即對任意的                                                 …………8分

                 

                                                                                        …………10分

                  而,當(dāng)且僅當(dāng)時,等號成立.

              所以                                                  …………12分

              22.(本小題滿分14分)

              解:(1)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為,

                     由已知得:                       …………3分

                     橢圓的標(biāo)準(zhǔn)方程為.                                 …………5分

                     (2)設(shè)

                     聯(lián)立      得:,      …………6分

              則        …………8分

                     又

                     因?yàn)橐?sub>為直徑的圓過橢圓的右頂點(diǎn),

                     ,即.                            …………9分

                    

                    

                     .                                      …………10分

                     解得:,且均滿足.         …………11分

                     當(dāng)時,的方程,直線過點(diǎn),與已知矛盾;…………12分

                     當(dāng)時,的方程為,直線過定點(diǎn).     …………13分

                     所以,直線過定點(diǎn),定點(diǎn)坐標(biāo)為.                         …………14分