日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 湖北省襄樊市2009年3月高三調(diào)研統(tǒng)一測試

          數(shù) 學(xué)(理科)

          命題人:襄樊市教研室  郭仁俊  審定人:襄樊四中 尹春明

          本試卷共4頁,全卷滿分150分.考試時間120分鐘。

          ?荚図樌

          注意事項(xiàng):

          1.答卷前,考生務(wù)必將自己的學(xué)校、班級、姓名、考號填寫在答題卷密封線內(nèi),將考號最后兩位填在答題卷右下方座位號內(nèi),同時把機(jī)讀卡上的項(xiàng)目填涂清楚,并認(rèn)真閱讀答題卷和機(jī)讀卡上的注意事項(xiàng)。

          2.選擇題每小題選出答案后,用2B鉛筆把機(jī)讀卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。答在試題卷上無效。

          3.將填空題和解答題用0.5毫米黑色墨水簽字筆或黑色墨水鋼筆直接答在答題卷上每題對應(yīng)的答題區(qū)域內(nèi),答在試題卷上無效。

          4.考試結(jié)束后,請將機(jī)讀卡和答題卷一并上交.

          一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。)

          1.     設(shè)a、b、c、d∈R,則復(fù)數(shù)為實(shí)數(shù)的充要條件是
          A.a(chǎn)d-bc = 0                B.a(chǎn)c-bd = 0            C.a(chǎn)c+bd = 0          D.a(chǎn)d+bc = 0

          試題詳情

          2.     的值為
          A.0                              B.1                          C.                   D.

          試題詳情

          3.     將函數(shù)的反函數(shù)的圖象按向量a = (1,1)平移后得到函數(shù)g (x)的圖學(xué)科網(wǎng)(Zxxk.Com)象,則g (x)的表達(dá)式為
          A.                                       B.
          C.                                         D.

          試題詳情

          4.     已知函數(shù)的最小正周期為,則該函數(shù)圖象
          A.關(guān)于直線對稱                                   B.關(guān)于點(diǎn)(,0)對稱
          C.關(guān)于點(diǎn)(,0)對稱                                    D.關(guān)于直線對稱

          試題詳情

          5.     兩個正方體M1、M2,棱長分別a、b,則對于正方體M1、M2有:棱長的比為a∶b,表面積的比為a2∶b2,體積比為a3∶b3.我們把滿足類似條件的幾何體稱為“相似體”,下列給出的幾何體中是“相似體”的是
          A.兩個球                     B.兩個長方體           C.兩個圓柱            D.兩個圓錐

          試題詳情

          6.     設(shè)奇函數(shù)在(0,+∞)上為增函數(shù),且,則不等式的解集為
                                                A.(-1,0)∪(1,+∞)                               B.(-∞,-1)∪(0,1)
          C.(-∞,-1)∪(1,+∞)                             D.(-1,0)∪(0,1)

          試題詳情

          7.     袋中有40個小球,其中紅色球16個,藍(lán)色球12個,白色球8個,黃色球4個,從中隨機(jī)抽取10個球作成一個樣本,則這個樣本恰好是按分層抽樣方法得到的概率為
          A.            B.        C.      D.

           

          試題詳情

          8.     如圖,直線MN與雙曲線的左右兩支分別交于M、N兩點(diǎn),與雙曲線的右準(zhǔn)線交于P點(diǎn),F(xiàn)為右焦點(diǎn),若|FM| = 2|FN|,,則實(shí)數(shù)的取值為
          A.                            B.1
          C.2                              D.

          試題詳情

          9.     設(shè)P表示平面圖形,m(P)是P表示的圖形面積.已知,,且,則下列恒成立的是
          A.         B.     C.    D.

           

          試題詳情

          10.     函數(shù)的圖象大致是

          試題詳情

          二.填空題(本大題共5小題,每小題5分,共25分。將答案填在答題卷相應(yīng)位置上。)

          11.     過點(diǎn)A(2,-3),且與向量m = (4,-3)垂直的直線方程是   

          試題詳情

          12.     從1到100的正整數(shù)中刪去所有2的倍數(shù)及3的倍數(shù)后,剩下數(shù)有   個.

          試題詳情

          13.     頂點(diǎn)在同一球面上的正四棱柱ABCD-A1B1C1D1中,AB = 1,AA1 = ,則A、C兩點(diǎn)間的球面距離為    

          試題詳情

          14.     假設(shè)甲、乙、丙三鎮(zhèn)兩兩之間的距離皆為20公里,兩條筆直的公路交于丁鎮(zhèn),其中一條通過甲、乙兩鎮(zhèn),另一條通過丙鎮(zhèn).現(xiàn)在一比例精確的地圖上量得兩公路的夾角為45°,則丙、丁兩鎮(zhèn)間的距離為    公里.

          試題詳情

          15.     研究問題:“已知關(guān)于x的不等式的解集為(1,2),解關(guān)于x的不等式”,有如下解法:
          解:由,令,則,1),
              所以不等式的解集為(,1).
          參考上述解法,已知關(guān)于x的不等式的解集為(-2,-1)∪(2,3),則關(guān)于x的不等式的解集為    

          試題詳情

          三.解答題(本大題共6小題,滿分75分。解答應(yīng)寫出文字說明,證明過程或演算步驟。)

          16.     (本大題滿分12分)
          已知A、B、C的坐標(biāo)分別為A(3,0)、B(0,3)、C(),
          (1)若,求角的值;學(xué)科網(wǎng)(Zxxk.Com)
          (2)若,求的值.




          試題詳情

           

          試題詳情

          17.     (本大題滿分12分)
          在如圖所示的四面體ABCD中,AB、BC、CD兩兩互相垂直,且BC = CD = 1.
          (1)求證:平面ACD⊥平面ABC;
          (2)求二面角C-AB-D的大。
          (3)若直線BD與平面ACD所成的角為,求的取值范圍.

          試題詳情

          18.     (本大題滿分12分)
          某商場舉行周末有獎促銷活動,凡在商場一次性購物滿500元的顧客可獲得一次抽獎機(jī)會.抽獎規(guī)則:自箱中一次摸出兩個球,確定顏色后放回,獎金數(shù)如下表.

          <small id="qsgol"><kbd id="qsgol"></kbd></small>

            <td id="qsgol"><ol id="qsgol"><b id="qsgol"></b></ol></td>
            <legend id="o5kww"></legend>
            <style id="o5kww"><abbr id="o5kww"></abbr></style>

            <strong id="o5kww"><u id="o5kww"></u></strong>
          1. 球的顏色

            一紅一藍(lán)

            兩藍(lán)

            兩紅

            獎金數(shù)

            100元

            150元

            200元

             

            試題詳情

             

            試題詳情

            19.      (本大題滿分12分)
            已知點(diǎn)A(-1,0)、B(1,0)和動點(diǎn)M滿足:,且,動點(diǎn)M的軌跡為曲線C,過點(diǎn)B的直線交C于P、Q兩點(diǎn).
            (1)求曲線C的方程;
            (2)求△APQ面積的最大值.


            試題詳情

            20.     (本大題滿分13分)
            若存在常數(shù)k和b (k、b∈R),使得函數(shù)對其定義域上的任意實(shí)數(shù)x分別滿足:,則稱直線l:的“隔離直線”.已知, (其中e為自然對數(shù)的底數(shù)).
            (1)求的極值;
            (2)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.


            試題詳情

            21.     (本大題滿分14分)
            已知數(shù)列{an}的前n項(xiàng)和Sn是二項(xiàng)式展開式中含x奇次冪的系數(shù)和.
            (1)求數(shù)列{an}的通項(xiàng)公式;
            (2)設(shè),求;
            (3)證明:

             

            試題詳情

            一.選擇題:DCBBA  DACCA

            二.填空題:11.4x-3y-17 = 0  12.33  13.
                  14.  15.

            三.解答題:

            16.(1)解:∵,                                  2分
            ∴由得:,即              4分
            又∵,∴                                                                                    6分

            (2)解:                                    8分
            得:,即          10分
            兩邊平方得:,∴                                          12分

            17.方法一

            (1)證:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC                                                      2分
            又∵CDÌ平面ACD,∴平面ACD⊥平面ABC   4分

            (2)解:∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD,故AB⊥BD
            ∴∠CBD是二面角C-AB-D的平面角          6分
            ∵在Rt△BCD中,BC = CD,∴∠CBD = 45°
            即二面角C-AB-D的大小為45°              8分

            (3)解:過點(diǎn)B作BH⊥AC,垂足為H,連結(jié)DH
            ∵平面ACD⊥平面ABC,∴BH⊥平面ACD,
            ∴∠BDH為BD與平面ACD所成的角           10分
            設(shè)AB = a,在Rt△BHD中,,

            ,∴                                                                                        12分

            方法二
            (1)同方法一                                                                                                               4分
            (2)解:設(shè)以過B點(diǎn)且∥CD的向量為x軸,為y軸和z軸建立如圖所示的空間直角坐標(biāo)系,設(shè)AB = a,則A(0,0,a),C(0,1,0),D(1,1,0), = (1,1,0), = (0,0,a)
            平面ABC的法向量 = (1,0,0)
            設(shè)平面ABD的一個法向量為n = (x,y,z),則

            n = (1,-1,0)                           6分

            ∴二面角C-AB-D的大小為45°                                                                           8分

            (3)解: = (0,1,-a), = (1,0,0), = (1,1,0)
            設(shè)平面ACD的一個法向量是m = (x,y,z),則
            ∴可取m = (0,a,1),設(shè)直線BD與平面ACD所成角為,則向量、m的夾角為
                                                                                    10分

            ,∴                                                                                        12分

            18.解:該商場應(yīng)在箱中至少放入x個其它顏色的球,獲得獎金數(shù)為,
            = 0,100,150,200
            ,
            ,                        8分
            的分布列為

            <sub id="o5kww"></sub>

              1. 0

                100

                150

                200

                P

                 

                19.(1)解:設(shè)M (x,y),在△MAB中,| AB | = 2,

                                        2分
                因此點(diǎn)M的軌跡是以A、B為焦點(diǎn)的橢圓,a = 2,c = 1
                ∴曲線C的方程為.                                                                                4分

                (2)解法一:設(shè)直線PQ方程為 (∈R)
                得:                                                            6分
                顯然,方程①的,設(shè)P(x1,y1),Q(x2,y2),則有

                                                                           8分
                ,則t≥3,                                                             10分
                由于函數(shù)在[3,+∞)上是增函數(shù),∴
                ,即S≤3
                ∴△APQ的最大值為3                                                                                              12分

                解法二:設(shè)P(x1,y1),Q(x2,y2),則
                當(dāng)直線PQ的斜率不存在時,易知S = 3
                設(shè)直線PQ方程為
                  得:  ①                                         6分
                顯然,方程①的△>0,則
                                                    8分
                                                10分
                    
                ,則,即S<3

                ∴△APQ的最大值為3                                                                                              12分

                20.(1)解:∵
                                                                                         2分
                當(dāng)時,
                ∵當(dāng)時,,此時函數(shù)遞減;
                當(dāng)時,,此時函數(shù)遞增;
                ∴當(dāng)時,F(xiàn)(x)取極小值,其極小值為0.                                                          4分

                (2)解:由(1)可知函數(shù)的圖象在處有公共點(diǎn),
                因此若存在的隔離直線,則該直線過這個公共點(diǎn).
                設(shè)隔離直線的斜率為k,則直線方程為,即              6分
                ,可得當(dāng)時恒成立
                得:                                                                              8分
                下面證明當(dāng)時恒成立.
                ,
                ,                                                                           10分
                當(dāng)時,
                ∵當(dāng)時,,此時函數(shù)遞增;
                當(dāng)時,,此時函數(shù)遞減;
                ∴當(dāng)時,取極大值,其極大值為0.                                                        12分
                從而,即恒成立.
                ∴函數(shù)存在唯一的隔離直線.                                              13分

                21.(1)解:記
                令x = 1得:
                令x =-1得:
                兩式相減得:
                                                                                                                        2分
                當(dāng)n≥2時,
                當(dāng)n = 1時,,適合上式
                                                                                                                 4分

                (2)解:
                注意到                               6分
                ,


                ,即                                             8分

                (3)解:
                    (n≥2)                                                                        10分

                         12分

                                                                       14分