日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2009屆高考數(shù)學(xué)壓軸題系列訓(xùn)練含答案及解析詳解四

          1(本小題滿分14分)

               已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).

          (Ⅰ)求實數(shù)a的值組成的集合A;

          (Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由. w.w.w.k.s.5.u.c.o.m

          本小題主要考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用和不等式等有關(guān)知識,考查數(shù)形結(jié)合及分類討論思想和靈活運用數(shù)學(xué)知識分析問題和解決問題的能力.滿分14分.

          解:(Ⅰ)f'(x)==

          ∵f(x)在[-1,1]上是增函數(shù),

          ∴f'(x)≥0對x∈[-1,1]恒成立,

          即x2-ax-2≤0對x∈[-1,1]恒成立.        ①

          設(shè)(x)=x2-ax-2,

          方法一:

                     (1)=1-a-2≤0,

          ①           -1≤a≤1,

                         (-1)=1+a-2≤0.

          ∵對x∈[-1,1],f(x)是連續(xù)函數(shù),且只有當a=1時,f'(-1)=0以及當a=-1時,f'(1)=0

          ∴A={a|-1≤a≤1}.      方法二:

                 ≥0,                   <0,

                               或

                     (-1)=1+a-2≤0          (1)=1-a-2≤0

                 0≤a≤1         或       -1≤a≤0

                 -1≤a≤1.

          ∵對x∈[-1,1],f(x)是連續(xù)函數(shù),且只有當a=1時,f'(-1)=0以及當a=-1時,f'(1)=0

          ∴A={a|-1≤a≤1}.

          (Ⅱ)由=,得x2-ax-2=0,   ∵△=a2+8>0

          ∴x1,x2是方程x2-ax-2=0的兩非零實根,

                       x1+x2=a,

          ∴          從而|x1-x2|==.

          x1x2=-2,

          ∵-1≤a≤1,∴|x1-x2|=≤3.

          要使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,

          當且僅當m2+tm+1≥3對任意t∈[-1,1]恒成立,

          即m2+tm-2≥0對任意t∈[-1,1]恒成立.        ②

          設(shè)g(t)=m2+tm-2=mt+(m2-2),

          方法一:

               g(-1)=m2-m-2≥0,

          ②  

                   g(1)=m2+m-2≥0,

          m≥2或m≤-2.

          所以,存在實數(shù)m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.

          方法二:

          當m=0時,②顯然不成立;

          當m≠0時,

                m>0,                m<0,

                            或

                 g(-1)=m2-m-2≥0      g(1)=m2+m-2≥0

           m≥2或m≤-2.

          所以,存在實數(shù)m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.

           

          2.(本小題滿分12分)

          如圖,P是拋物線C:y=x2上一點,直線l過點P且與拋物線C交于另一點Q.

          (Ⅰ)若直線l與過點P的切線垂直,求線段PQ中點M的軌跡方程;

          (Ⅱ)若直線l不過原點且與x軸交于點S,與y軸交于點T,試求的取值范圍.

          本題主要考查直線、拋物線、不等式等基礎(chǔ)知識,求軌跡方程的方法,解析幾何的基本思想和綜合解題能力.滿分12分.

          解:(Ⅰ)設(shè)P(x1,y1),Q(x2,y2),M(x0,y0),依題意x1≠0,y1>0,y2>0.

          由y=x2,           ①

          得y'=x.

          ∴過點P的切線的斜率k= x1,

          ∴直線l的斜率kl=-=-,

          ∴直線l的方程為y-x12=- (x-x1),

          方法一:

          聯(lián)立①②消去y,得x2+x-x12-2=0.

          ∵M是PQ的中點

                     x0==-

                      y0=x12(x0-x1).

          消去x1,得y0=x02++1(x0≠0),

          ∴PQ中點M的軌跡方程為y=x2++1(x≠0).

          方法二:

          由y1=x12,y2=x22,x0=,

          得y1-y2=x12x22=(x1+x2)(x1-x2)=x0(x1-x2),

          則x0==kl=-,

          ∴x1=-,

          將上式代入②并整理,得

          y0=x02++1(x0≠0),

          ∴PQ中點M的軌跡方程為y=x2++1(x≠0).

          (Ⅱ)設(shè)直線l:y=kx+b,依題意k≠0,b≠0,則T(0,b).

          分別過P、Q作PP'⊥x軸,QQ'⊥y軸,垂足分別為P'、Q',則

          .

                      y=x2

          由    消去x,得y2-2(k2+b)y+b2=0.      ③

                               y=kx+b

                    y1+y2=2(k2+b),

                      y1y2=b2.

          方法一:

          |b|()≥2|b|=2|b|=2.

          ∵y1、y2可取一切不相等的正數(shù),

          的取值范圍是(2,+).

          方法二:

          =|b|=|b|.

          當b>0時,=b==+2>2;

          當b<0時,=-b=.

          又由方程③有兩個相異實根,得△=4(k2+b)2-4b2=4k2(k2+2b)>0,

          于是k2+2b>0,即k2>-2b.

          所以>=2.

          ∵當b>0時,可取一切正數(shù),

          的取值范圍是(2,+).

          方法三:

          由P、Q、T三點共線得kTQ=KTP,

          =.

          則x1y2-bx1=x2y1-bx2,即b(x2-x1)=(x2y1-x1y2).

          于是b==-x1x2.

            1. 2

              2

              可取一切不等于1的正數(shù),

              的取值范圍是(2,+).

              3.(本小題滿分12分)

                     某突發(fā)事件,在不采取任何預(yù)防措施的情況下發(fā)生的概率為0.3,一旦發(fā)生,將造成400萬元的損失. 現(xiàn)有甲、乙兩種相互獨立的預(yù)防措施可供采用. 單獨采用甲、乙預(yù)防措施所需的費用分別為45萬元和30萬元,采用相應(yīng)預(yù)防措施后此突發(fā)事件不發(fā)生的概率為0.9和0.85. 若預(yù)防方案允許甲、乙兩種預(yù)防措施單獨采用、聯(lián)合采用或不采用,請確定預(yù)防方案使總費用最少.

                     (總費用=采取預(yù)防措施的費用+發(fā)生突發(fā)事件損失的期望值.)

              本小題考查概率的基本知識和數(shù)學(xué)期望概念及應(yīng)用概率知識解決實際問題的能力,滿分12分.

              解:①不采取預(yù)防措施時,總費用即損失期望為400×0.3=120(萬元);

                     ②若單獨采取措施甲,則預(yù)防措施費用為45萬元,發(fā)生突發(fā)事件的概率為

              1-0.9=0.1,損失期望值為400×0.1=40(萬元),所以總費用為45+40=85(萬元)

              ③若單獨采取預(yù)防措施乙,則預(yù)防措施費用為30萬元,發(fā)生突發(fā)事件的概率為1-0.85=0.15,損失期望值為400×0.15=60(萬元),所以總費用為30+60=90(萬元);

              ④若聯(lián)合采取甲、乙兩種預(yù)防措施,則預(yù)防措施費用為45+30=75(萬元),發(fā)生突發(fā)事件的概率為(1-0.9)(1-0.85)=0.015,損失期望值為400×0.015=6(萬元),所以總費用為75+6=81(萬元).

              綜合①、②、③、④,比較其總費用可知,應(yīng)選擇聯(lián)合采取甲、乙兩種預(yù)防措施,可使總費用最少.

               

              4.(本小題滿分14分)

                     已知

              (I)已知數(shù)列極限存在且大于零,求(將A用a表示);

              (II)設(shè)

              (III)若都成立,求a的取值范圍.

              本小題主要考查數(shù)列、數(shù)列極限的概念和數(shù)學(xué)歸納法,考查靈活運用數(shù)學(xué)知識分析問題和解決問題的能力,滿分14分.

                     解:(I)由

                    

                     (II)

                    

                     (III)

                    

                     (i)當n=1時結(jié)論成立(已驗證).

                     (ii)假設(shè)當

                    

                     故只須證明

                    

                     即n=k+1時結(jié)論成立.

                     根據(jù)(i)和(ii)可知結(jié)論對一切正整數(shù)都成立.

                     故

              5.(本小題滿分14分,第一小問滿分4分,第二小問滿分10分)

              已知,函數(shù).

              (Ⅰ)當時,求使成立的的集合;

              (Ⅱ)求函數(shù)在區(qū)間上的最小值.

              本小題主要考查運用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法,考查分類討論的數(shù)學(xué)思想和分析推理能力. 滿分14分.

              解:(Ⅰ)由題意,.

              時,,解得;

              時,,解得.

              綜上,所求解集為.

              (Ⅱ)設(shè)此最小值為.

              ①當時,在區(qū)間上,.

              因為

                                 ,

              在區(qū)間上是增函數(shù),所以.

              ②當時,在區(qū)間上,,由

                         .

              ③當時,在區(qū)間上,.

                   .

              ,在區(qū)間內(nèi),從而為區(qū)間上的增函數(shù),

              由此得          .

              ,則.

                   當時,,從而為區(qū)間上的增函數(shù);

                   當時,,從而為區(qū)間上的減函數(shù).

              因此,當時,.

              時,,故;

              時,,故.

              綜上所述,所求函數(shù)的最小值

                   

              6.(本小題滿分14分,第一小問滿分2分,第二、第三小問滿分各6分)

              設(shè)數(shù)列的前項和為,已知,且

              試題詳情

              ,

              試題詳情

              其中為常數(shù).

              試題詳情

              (Ⅰ)求的值;

              試題詳情

              (Ⅱ)證明:數(shù)列為等差數(shù)列;

              試題詳情

              (Ⅲ)證明:不等式對任何正整數(shù)都成立.

              本小題主要考查等差數(shù)列的有關(guān)知識、不等式的證明方法,考查思維能力、運算能力.

              試題詳情

              解:(Ⅰ)由已知,得,,.

              試題詳情

              ,知

              試題詳情

                          即

              試題詳情

              解得    ,.

              (Ⅱ)方法1

              試題詳情

              由(Ⅰ),得  ,             ①

              試題詳情

              所以         .           ②

              試題詳情

              ②-①,得    ,    ③

              試題詳情

              所以         .   ④

              試題詳情

              ④-③,得    .

              試題詳情

              因為         ,

              試題詳情

              所以         .

              試題詳情

              又因為      

              試題詳情

              所以         ,

              試題詳情

              即           .

              試題詳情

              所以數(shù)列為等差數(shù)列.

              方法2

              試題詳情

              由已知,得,

              試題詳情

              ,且,

              試題詳情

              所以數(shù)列是唯一確定的,因而數(shù)列是唯一確定的.

              試題詳情

              設(shè),則數(shù)列為等差數(shù)列,前項和.

               

              試題詳情

              于是  

              試題詳情

              由唯一性得   ,即數(shù)列為等差數(shù)列.

              試題詳情

              (Ⅲ)由(Ⅱ)可知,.

              試題詳情

              要證       ,

              試題詳情

              只要證     .

              試題詳情

              因為       ,

              試題詳情

              故只要證   ,

              試題詳情

              即只要證   .

              試題詳情

              因為      

              試題詳情

                        

              試題詳情

              ,

              試題詳情

              所以命題得證.w.w.w.k.s.5.u.c.o.m

               

               

              試題詳情

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>