日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即為二面角的平面角.2分 查看更多

           

          題目列表(包括答案和解析)

          ⊙O1和⊙O2的極坐標(biāo)方程分別為

          ⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

          ⑵求經(jīng)過⊙O1,⊙O2交點的直線的直角坐標(biāo)方程.

          【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運用

          (1)中,借助于公式,,將極坐標(biāo)方程化為普通方程即可。

          (2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

          解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.

          (I),,由.所以

          為⊙O1的直角坐標(biāo)方程.

          同理為⊙O2的直角坐標(biāo)方程.

          (II)解法一:由解得,

          即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標(biāo)方程為y=-x.

          解法二: 由,兩式相減得-4x-4y=0,即過交點的直線的直角坐標(biāo)方程為y=-x

           

          查看答案和解析>>

          已知四棱錐的底面為直角梯形,,底面,且,的中點。

          (1)證明:面

          (2)求所成的角;

          (3)求面與面所成二面角的余弦值.

          【解析】(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.

          (2)建立空間直角坐標(biāo)系,寫出向量的坐標(biāo),然后由向量的夾角公式求得余弦值,從而得所成角的大小.

          (3)分別求出平面的法向量和面的一個法向量,然后求出兩法向量的夾角即可.

           

          查看答案和解析>>

          在四棱錐中,平面,底面為矩形,.

          (Ⅰ)當(dāng)時,求證:

          (Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

          【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,

          又因為,………………2分

          ,得證。

          第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》

          要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

          由此知道a=2,  設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

          解:(Ⅰ)當(dāng)時,底面ABCD為正方形,

          又因為,………………3分

          (Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

          則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

          設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

           

          查看答案和解析>>


          同步練習(xí)冊答案