日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以實數(shù)的取值范圍為.----------------------------------12分 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)處取得極值2.

          ⑴ 求函數(shù)的解析式;

          ⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)m的取值范圍;

          【解析】第一問中利用導數(shù)

          又f(x)在x=1處取得極值2,所以

          所以

          第二問中,

          因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

          解:⑴ 求導,又f(x)在x=1處取得極值2,所以,即,所以…………6分

          ⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

          當f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                          …………12分

          .綜上所述,當時,f(x)在(m,2m+1)上單調(diào)遞增,當時,f(x)在(m,2m+1)上單調(diào)遞減;則實數(shù)m的取值范圍是

           

          查看答案和解析>>

          已知函數(shù) R).

          (Ⅰ)若 ,求曲線  在點  處的的切線方程;

          (Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

          【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。

          第一問中,利用當時,

          因為切點為(), 則,                 

          所以在點()處的曲線的切線方程為:

          第二問中,由題意得,即可。

          Ⅰ)當時,

          ,                                  

          因為切點為(), 則,                  

          所以在點()處的曲線的切線方程為:.    ……5分

          (Ⅱ)解法一:由題意得,.      ……9分

          (注:凡代入特殊值縮小范圍的均給4分)

          ,           

          因為,所以恒成立,

          上單調(diào)遞增,                            ……12分

          要使恒成立,則,解得.……15分

          解法二:                 ……7分

                (1)當時,上恒成立,

          上單調(diào)遞增,

          .                  ……10分

          (2)當時,令,對稱軸

          上單調(diào)遞增,又    

          ① 當,即時,上恒成立,

          所以單調(diào)遞增,

          ,不合題意,舍去  

          ②當時,, 不合題意,舍去 14分

          綜上所述: 

           

          查看答案和解析>>

          (2011•洛陽二模)給出下列命題:
          ①設向量
          e1
          e2
          滿足|
          e1
          |=2,|
          e2
          |=1,
          e1
          ,
          e2
          的夾角為
          π
          3
          .若向量2t
          e1
          +7
          e2
          e1
          +t
          e2
          的夾角為鈍角,則實數(shù)t的取值范圍是(-7,-
          1
          2
          );
          ②已知一組正數(shù)x1,x2,x3,x4的方差為s2=
          1
          4
          (x12+x22+x32+x42)-4,則x1+1,x2+1,x3+1,x4+1的平均數(shù)為1
          ③設a,b,c分別為△ABC的角A,B,C的對邊,則方程x2+2ax+b2=o與x2+2cx-b2=0有公共根的充要條件是A=90°;
          ④若f(n)表示n2+1(n∈N)的各位上的數(shù)字之和,如112+1=122,1+2+2=5,所以f(n)=5,記f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,則f20(5)=11.
          上面命題中,假命題的序號是
           (寫出所有假命題的序號).

          查看答案和解析>>

           (考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)

          A.(不等式選做題)若關于的不等式存在實數(shù)解,則實數(shù)的取值范圍是            

          B.(幾何證明選做題)如圖,∠B=∠D,,,且AB=6,AC=4,AD=12,則BE=        

          C.(坐標系與參數(shù)方程選做題)直角坐標系中,以原點O為極點,軸的正半軸為極軸建立極坐標系,設點A,B分別在曲線為參數(shù))和曲線上,則的最小值為                

           

          查看答案和解析>>

          (請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
          A.(不等式選做題)若不等式a≥|x+1|+|x-2|存在實數(shù)解,則實數(shù)a的取值范圍是
           

          B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
           

          精英家教網(wǎng)

          C.(坐標系與參數(shù)方程選做題)直角坐標系xoy中,以原點為極點,x軸的正半軸為極軸建極坐標系,設點A,B分別在曲線C1
          x=3+cos θ
          y=4+sin θ
           (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
           

          查看答案和解析>>


          同步練習冊答案