日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù) 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=4sin(2x-
          π
          3
          )+1
          ,給定條件p:
          π
          4
          ≤x≤
          π
          2
          ,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數(shù)m的取值范圍為
           

          查看答案和解析>>

          已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
          52
          ))的值是
           

          查看答案和解析>>

          已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設f(x)=
          g(x)
          x

          (Ⅰ)求a,b的值;
          (Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數(shù)k的范圍;
          (Ⅲ)方程f(|2x-1|)+k(
          2
          |2x-1|
          -3)=0
          有三個不同的實數(shù)解,求實數(shù)k的范圍.

          查看答案和解析>>

          8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點個數(shù)為( 。

          查看答案和解析>>

          已知函數(shù)f(x)=
          3-x,x>0
          x2-1.x≤0
          ,則f[f(-2)]=
           

          查看答案和解析>>

          1――12   A  B  B  B  B  C  D  D  C  A  C  B

           

          13、1            14、e             15、      16、①②④     

          17、解上是增函數(shù),

          方程=x2 + (m ? 2 )x + 1 = 0的兩個根在0至3之間

          <m≤0

          依題意得:m的取值范圍是:<m≤-1或m>0

          18、解:(1),

          當a=1時 解集為

          當a>1時,解集為,

          當0<a<1時,解集為;

          (2)依題意知f(1)是f(x)的最小值,又f(1)不可能是端點值,則f(1)是f(x)的一個極小值,由,

          19、解:(1)當所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,

           

          所以f(x)=

          (2)由題意,不妨設A點在第一象限,坐標為(t,-t2-t+5)其中,,

          則S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.

          (舍去),t2=1.

          ,所以S(t)在上單調(diào)遞增,在上單調(diào)遞減,

          所以當t=1時,ABCD的面積取得極大值也是S(t)在上的最大值。

          從而當t=1時,矩形ABCD的面積取得最大值6.

          20、解:

          21、解:,

          ,要使在其定義域內(nèi)為單調(diào)函數(shù),只需內(nèi)滿足:恒成立.

          ① 當時,,∵,∴,∴,

          內(nèi)為單調(diào)遞減.  

          ② 當時,,對稱軸為, ∴.

          只需,即,

          內(nèi)為單調(diào)遞增。

           ③當時,,對稱軸為.

          只需,即恒成立.

          綜上可得,.     

          22、解:(Ⅰ)

                 

                  同理,令

                  ∴f(x)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

                  由此可知

             (Ⅱ)由(I)可知當時,有,

                  即.

              .

            (Ⅲ) 設函數(shù)

                 

                  ∴函數(shù))上單調(diào)遞增,在上單調(diào)遞減.

                  ∴的最小值為,即總有

                  而

                 

                  即

                  令

                 

                 

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           


          同步練習冊答案