日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ②.即時.不等式的解為:且 查看更多

           

          題目列表(包括答案和解析)

          已知,設命題:不等式解集為R;命題:方程沒有實根,如果命題p或q為真命題,p且q為假命題,求的取值范圍.

          【解析】本題先求出p、q為真時的c的取值范圍;然后再對p、q一真一假兩種情況進行討論求解,最后求并集即可.

           

          查看答案和解析>>

          已知二次函數(shù)的二次項系數(shù)為,且不等式的解集為,

          (1)若方程有兩個相等的根,求的解析式;

          (2)若的最大值為正數(shù),求的取值范圍.

          【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),

          設出二次函數(shù)的解析式,然后利用判別式得到a的值。

          第二問中,

          解:(1)∵f(x)+2x>0的解集為(1,3),

             ①

          由方程

                        ②

          ∵方程②有兩個相等的根,

          ,

          即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

          a=-1/5代入①得:

          (2)由

           

           解得:

          故當f(x)的最大值為正數(shù)時,實數(shù)a的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設,求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.

          【解析】第一問中,當時,,.結合表格和導數(shù)的知識判定單調性和極值,進而得到最值。

          第二問中,∵,,      

          ∴原不等式等價于:,

          , 亦即

          分離參數(shù)的思想求解參數(shù)的范圍

          解:(Ⅰ)當時,,

          上變化時,的變化情況如下表:

           

           

          1/e

          時,,

          (Ⅱ)∵,      

          ∴原不等式等價于:,

          , 亦即

          ∴對于任意的,原不等式恒成立,等價于恒成立,

          ∵對于任意的時, (當且僅當時取等號).

          ∴只需,即,解之得.

          因此,的取值范圍是

           

          查看答案和解析>>

          已知函數(shù);

          (1)若函數(shù)在其定義域內為單調遞增函數(shù),求實數(shù)的取值范圍。

          (2)若函數(shù),若在[1,e]上至少存在一個x的值使成立,求實數(shù)的取值范圍。

          【解析】第一問中,利用導數(shù),因為在其定義域內的單調遞增函數(shù),所以 內滿足恒成立,得到結論第二問中,在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,轉換為不等式有解來解答即可。

          解:(1),

          因為在其定義域內的單調遞增函數(shù),

          所以 內滿足恒成立,即恒成立,

          亦即,

          即可  又

          當且僅當,即x=1時取等號,

          在其定義域內為單調增函數(shù)的實數(shù)k的取值范圍是.

          (2)在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,設

           上的增函數(shù),依題意需

          實數(shù)k的取值范圍是

           

          查看答案和解析>>

          已知數(shù)列的前項和為,且 (N*),其中

          (Ⅰ) 求的通項公式;

          (Ⅱ) 設 (N*).

          ①證明: ;

          ② 求證:.

          【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

          所以利用放縮法,從此得到結論。

          解:(Ⅰ)當時,由.  ……2分

          若存在

          從而有,與矛盾,所以.

          從而由.  ……6分

           (Ⅱ)①證明:

          證法一:∵

           

          .…………10分

          證法二:,下同證法一.           ……10分

          證法三:(利用對偶式)設,,

          .又,也即,所以,也即,又因為,所以.即

                              ………10分

          證法四:(數(shù)學歸納法)①當時, ,命題成立;

             ②假設時,命題成立,即,

             則當時,

              即

          故當時,命題成立.

          綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

          ②由于,

          所以

          從而.

          也即

           

          查看答案和解析>>


          同步練習冊答案