題目列表(包括答案和解析)
已知函數(shù).(
)
(1)若在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若在區(qū)間上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.然后求解得到。
解:(1)在區(qū)間
上單調(diào)遞增,
則在區(qū)間
上恒成立. …………3分
即,而當(dāng)
時(shí),
,故
.
…………5分
所以.
…………6分
(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.
∵ …………9分
① 若,令
,得極值點(diǎn)
,
,
當(dāng),即
時(shí),在(
,+∞)上有
,此時(shí)
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng),即
時(shí),同理可知,
在區(qū)間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時(shí)在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當(dāng)時(shí),函數(shù)
的圖象恒在直線
下方.
(14分)已知函數(shù),其中常數(shù)
。
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),是否存在實(shí)數(shù)
,使得直線
恰為曲線
的切線?若存在,求出
的值;若不存在,說(shuō)明理由;
(3)設(shè)定義在上的函數(shù)
的圖象在點(diǎn)
處的切線方程為
,當(dāng)
時(shí),若
在
內(nèi)恒成立,則稱
為函數(shù)
的“類對(duì)稱點(diǎn)”。當(dāng)
,試問
是否存在“類對(duì)稱點(diǎn)”?若存在,請(qǐng)至少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo);若不存在,說(shuō)明理由.
(14分)已知函數(shù),其中常數(shù)
。
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),是否存在實(shí)數(shù)
,使得直線
恰為曲線
的切線?若存在,求出
的值;若不存在,說(shuō)明理由;
(3)設(shè)定義在上的函數(shù)
的圖象在點(diǎn)
處的切線方程為
,當(dāng)
時(shí),若
在
內(nèi)恒成立,則稱
為函數(shù)
的“類對(duì)稱點(diǎn)”。當(dāng)
,試問
是否存在“類對(duì)稱點(diǎn)”?若存在,請(qǐng)至少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo);若不存在,說(shuō)明理由.
設(shè)三次函數(shù),在
處取得極值,其圖像在
處的切線的斜率為
。
(1)求證:;
(2)若函數(shù)在區(qū)間
上單調(diào)遞增,求
的取值范圍;
(3)問是否存在實(shí)數(shù)(
是與
無(wú)關(guān)的常數(shù)),當(dāng)
時(shí),恒有
恒成立?若存在,試求出
的最小值;若不存在,請(qǐng)說(shuō)明理由。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com