日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又由得.∴. 查看更多

           

          題目列表(包括答案和解析)

          如圖,從橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且AB∥OP,|F1A|=
          10
          +
          5
          ,
          (1)求橢圓E的方程.
          (2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點C,D,且
          OC
          OD
          ?若存在,寫出該圓的方程,并求|CD|的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          如圖,在平面直角坐標(biāo)系xOy中.橢圓C:
          x2
          2
          +y2=1
          的右焦點為F,右準(zhǔn)線為l.
          (1)求到點F和直線l的距離相等的點G的軌跡方程.
          (2)過點F作直線交橢圓C于點A,B,又直線OA交l于點T,若
          OT
          =2
          OA
          ,求線段AB的長;
          (3)已知點M的坐標(biāo)為(x0,y0),x0≠0,直線OM交直線
          x0x
          2
          +y0y=1
          于點N,且和橢圓C的一個交點為點P,是否存在實數(shù)λ,使得
          OP
          2
          OM
          ON
          ?
          ,若存在,求出實數(shù)λ;若不存在,請說明理由.

          查看答案和解析>>

          如圖,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點.

          (Ⅰ)證明:OD//平面ABC;

          (Ⅱ)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

          【解析】第一問:取AC中點F,連結(jié)OF、FB.∵F是AC的中點,O為CE的中點,

          ∴OF∥EA且OF=且BD=

          ∴OF∥DB,OF=DB,

          ∴四邊形BDOF是平行四邊形。

          ∴OD∥FB

          第二問中,當(dāng)N是EM中點時,ON⊥平面ABDE。           ………7分

          證明:取EM中點N,連結(jié)ON、CM, AC=BC,M為AB中點,∴CM⊥AB,

          又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,

          ∴CM⊥面ABDE,∵N是EM中點,O為CE中點,∴ON∥CM,

          ∴ON⊥平面ABDE。

           

          查看答案和解析>>

          如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB

          (Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

           

          【解析】本試題主要考查了立體幾何中的運用。

          (1)證明:因為SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

          (Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

          AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

          故△ADE為等腰三角形.

          取ED中點F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

          連接FG,則FG∥EC,F(xiàn)G⊥DE.

          所以,∠AFG是二面角A-DE-C的平面角.

          連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =

          cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

          所以,二面角A-DE-C的大小為120°

           

          查看答案和解析>>

          如圖,從橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且ABOP,|F1A|=
          10
          +
          5
          ,
          (1)求橢圓E的方程.
          (2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點C,D,且
          OC
          OD
          ?若存在,寫出該圓的方程,并求|CD|的取值范圍;若不存在,說明理由.

          查看答案和解析>>


          同步練習(xí)冊答案