日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 20.已知函數(shù),.(I)當(dāng)0<a<b.且f時(shí).求證:ab>1,(II)是否存在實(shí)數(shù)a.b.使得函數(shù)y=f(x)的定義域.值域都是[a.b].若存在.則求出a.b的值.若不存在.請(qǐng)說(shuō)明理由.(III)若存在實(shí)數(shù)a.b.使得函數(shù)y=f(x)的定義域?yàn)?[a.b]時(shí).值域?yàn)?[ma.mb],求m的取值范圍. 山東省2006―2007學(xué)年度下學(xué)期 高三數(shù)學(xué)總復(fù)習(xí)綜合試題 查看更多

           

          題目列表(包括答案和解析)

          (2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
          3
          sin2x+2sin(
          π
          4
          +x)cos(
          π
          4
          +x)

          (I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
          (II)當(dāng)x∈[0,
          π
          2
          ]  時(shí),求函數(shù)f(x)
          的值域.

          查看答案和解析>>

          (本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

          ⑴ 求,滿足的關(guān)系式;

          ⑵ 若上恒成立,求的取值范圍;

          ⑶ 證明:

           

          查看答案和解析>>

          (本小題滿分14分) 設(shè)是定義在區(qū)間上的偶函數(shù),命題上單調(diào)遞減;命題,若“”為假,求實(shí)數(shù)的取值范圍。

          查看答案和解析>>

          (07年安徽卷文)(本小題滿分14分)設(shè)F是拋物線G:x2=4y的焦點(diǎn).

            。á瘢┻^(guò)點(diǎn)P(0,-4)作拋物線G的切線,求切線方程:

          (Ⅱ)設(shè)AB為勢(shì)物線G上異于原點(diǎn)的兩點(diǎn),且滿足,延長(zhǎng)AF、BF分別交拋物線G于點(diǎn)C,D,求四邊形ABCD面積的最小值.

          查看答案和解析>>

          (本小題滿分14分)關(guān)于的方程

          (1)若方程C表示圓,求實(shí)數(shù)m的取值范圍;

          (2)在方程C表示圓時(shí),若該圓與直線

          ,求實(shí)數(shù)m的值;

          (3)在(2)的條件下,若定點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)P是線段MN上的動(dòng)點(diǎn),

          求直線AP的斜率的取值范圍。

           

          查看答案和解析>>

          一、選擇題(本大題共8小題,每小題5分,共40分)

          1.D  2.C 3.B 4.B 5.D 6.D 7.A 8.C

          二、填空題(本大題共6小題,每小題5分,共30分)

          9.72    10.    11.1 ,       12.f(x)=,3

          13.,          14.①②③④ , ①③②④

          注:兩個(gè)空的填空題第一個(gè)空填對(duì)得2分,第二個(gè)空填對(duì)得3分.

          三、解答題(本大題共6小題,共80分)

          15.(本小題滿分13分)

          解:設(shè)既會(huì)唱歌又會(huì)跳舞的有x人,則文娛隊(duì)中共有(7-x)人,那么只會(huì)一項(xiàng)的人數(shù)是

          (7-2 x)人.

           (I)∵,

          .……………………………………3分

          ∴x=2.           ……………………………………5分

          故文娛隊(duì)共有5人.……………………………………7分

          (II) 的概率分布列為

          0

          1

          2

          P

          ,……………………………………9分

          ,……………………………………11分

          =1.   …………………………13分

          16.(本小題滿分13分)

          解:(I)由,得

          .……………………………………2分

          當(dāng)x=1時(shí),切線l的斜率為3,可得2a+b=0.       ①

          當(dāng)時(shí),有極值,則,可得4a+3b+4=0.②

          由①、②解得    a=2,b=-4.……………………………………5分

          設(shè)切線l的方程為 

          由原點(diǎn)到切線l的距離為,

          .解得m=±1.

          ∵切線l不過(guò)第四象限,

          ∴m=1.……………………………………6分

          由于l切點(diǎn)的橫坐標(biāo)為x=1,∴

          ∴1+a+b+c=4.

          ∴c=5.…………………………………………………………………7分

          (II)由(I)可得,

          .……………………………………8分

          ,得x=-2,

          x

          [-3,-2)

          -2

          (-2, )

          (,1]

          +

          0

          -

          0

          +

          f(x)

          極大值

          極小值

          ……………………………………11分

          ∴f(x)在x=-2處取得極大值f(-2)=13.

          處取得極小值=

          又f(-3)=8,f(1)=4.

          ∴f(x)在[-3,1]上的最大值為13,最小值為.……………………………………13分

           

           

          17.(本小題滿分14分)

          解法一:(I) ∵PC平面ABC,平面ABC,

          ∴PCAB.…………………………2分

          ∵CD平面PAB,平面PAB,

          ∴CDAB.…………………………4分

          ,

          ∴AB平面PCB.  …………………………5分

          (II) 過(guò)點(diǎn)A作AF//BC,且AF=BC,連結(jié)PF,CF.

          為異面直線PA與BC所成的角.………6分

          由(Ⅰ)可得AB⊥BC,

          ∴CFAF.

          由三垂線定理,得PFAF.

          則AF=CF=,PF=,

          中,  tan∠PAF==,

          ∴異面直線PA與BC所成的角為.…………………………………9分

          (III)取AP的中點(diǎn)E,連結(jié)CE、DE.

          ∵PC=AC=2,∴CE PA,CE=

          ∵CD平面PAB,

          由三垂線定理的逆定理,得  DE PA.

          為二面角C-PA-B的平面角.…………………………………11分

          由(I) AB平面PCB,又∵AB=BC,可求得BC=

            在中,PB=,

             

              在中, sin∠CED=

          ∴二面角C-PA-B的大小為arcsin.……14分

          解法二:(I)同解法一.

          (II) 由(I) AB平面PCB,∵PC=AC=2,

          又∵AB=BC,可求得BC=

          以B為原點(diǎn),如圖建立坐標(biāo)系.

          則A(0,,0),B(0,0,0),

          C(,0,0),P(,0,2).

          …………………7分

              則+0+0=2.

              ==

             ∴異面直線AP與BC所成的角為.………………………10分

          (III)設(shè)平面PAB的法向量為m= (x,y,z).

          ,,

             即

          解得   令= -1,  得 m= (,0,-1).

             設(shè)平面PAC的法向量為n=().

          ,,

           則   即

          解得   令=1,  得 n= (1,1,0).……………………………12分

              =

              ∴二面角C-PA-B的大小為arccos.………………………………14分

          18.(本小題滿分13分)

          解:(I)設(shè)P(x,y),因?yàn)锳、B分別為直線上的點(diǎn),故可設(shè)

             

             ∵,

             ∴………………………4分

             又,

             ∴.……………………………………5分

             ∴

            即曲線C的方程為.………………………………………6分

          (II) 設(shè)N(s,t),M(x,y),則由,可得(x,y-16)= (s,t-16).

               故,.……………………………………8分

               ∵M(jìn)、N在曲線C上,

               ∴……………………………………9分

               消去s得 

          由題意知,且

               解得   .………………………………………………………11分

          又   , ∴

               解得  ).

             故實(shí)數(shù)的取值范圍是).………………………………13分

          19.(本小題滿分13分)

          解:(I)∵,,,

                  ∴

                  即

                  又,可知對(duì)任何,,

          所以.……………………………2分

                  ∵

                ∴是以為首項(xiàng),公比為的等比數(shù)列.………4分

              (II)由(I)可知=  ().

                  ∴

                  .……………………………5分

                   當(dāng)n=7時(shí),;

                   當(dāng)n<7時(shí),,;

                   當(dāng)n>7時(shí),,

          ∴當(dāng)n=7或n=8時(shí),取最大值,最大值為.……8分

            (III)由,得       (*)

                  依題意(*)式對(duì)任意恒成立,

                  ①當(dāng)t=0時(shí),(*)式顯然不成立,因此t=0不合題意.…………9分

              、诋(dāng)t<0時(shí),由,可知).

                而當(dāng)m是偶數(shù)時(shí),因此t<0不合題意.…………10分

              、郛(dāng)t>0時(shí),由),

           ∴.    ()……11分

                設(shè)     (

                ∵ =,

                ∴

                ∴的最大值為

                所以實(shí)數(shù)的取值范圍是.…………………………………13分

          20.(本小題滿分14分)

          解:(I) ∵x>0,∴

          ∴f(x)在(0,1)上為減函數(shù),在上是增函數(shù).

          由0<a<b,且f(a)=f(b),

          可得 0<a1<b和

          ∴2ab=a+b>.……………………………………3分

          ,即ab>1.……………………………………4分

           (II)不存在滿足條件的實(shí)數(shù)a,b.

               若存在滿足條件的實(shí)數(shù)a,b,使得函數(shù)y=的定義域、值域都是

          [a,b],則a>0.

              

          ①   當(dāng)時(shí),在(0,1)上為減函數(shù).

               即 

          解得  a=b.

          故此時(shí)不存在適合條件的實(shí)數(shù)a,b.………………………………6分

          ②     當(dāng)時(shí),上是增函數(shù).

               即 

          此時(shí)a,b是方程的根,此方程無(wú)實(shí)根.

          故此時(shí)不存在適合條件的實(shí)數(shù)a,b.………………………………8分

          ③     當(dāng),時(shí),

          由于,而

          故此時(shí)不存在適合條件的實(shí)數(shù)a,b.

                綜上可知,不存在適合條件的實(shí)數(shù)a,b.………………………………10分

          (III)若存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域?yàn)閇a,b]時(shí),值域?yàn)閇ma,mb].

                則a>0,m>0.

          ①       當(dāng)時(shí),由于f(x)在(0,1)上是減函數(shù),故.此時(shí)刻得a,b異號(hào),不符合題意,所以a,b不存在.

          ②       當(dāng)時(shí),由(II)知0在值域內(nèi),值域不可能是[ma,mb],所以a,b不存在.

                  故只有

          上是增函數(shù),

               ∴        即 

          a,  b是方程的兩個(gè)根.

          即關(guān)于x的方程有兩個(gè)大于1的實(shí)根.……………………12分

          設(shè)這兩個(gè)根為,

          +=?=

                 即 

          解得  

              故m的取值范圍是.…………………………………………14分

           

           

           

           

           

           

           


          同步練習(xí)冊(cè)答案