日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ∴ ∥.又 ∵平面, 平面,∴∥平面. -()(3)作CH⊥AB于H.連B1H.即為所求.(2`)計算得:. () 查看更多

           

          題目列表(包括答案和解析)

          如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;

          (Ⅱ)若為側(cè)棱PB的中點,求直線AE與底面所成角的正弦值.

          【解析】第一問中,利用由知, ,

          又AP=PC=2,所以AC=2,

          又AB=4, BC=2,,所以,所以,即,

          又平面平面ABC,平面平面ABC=AC, 平面ABC,

          平面ACP,所以第二問中結(jié)合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

          為直線AE與底面ABC 所成角,

           (Ⅰ) 證明:由用由知, ,

          又AP=PC=2,所以AC=2,

          又AB=4, BC=2,,所以,所以,即,

          又平面平面ABC,平面平面ABC=AC, 平面ABC,

          平面ACP,所以

          ………………………………………………6分

          (Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,

          因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

          又EH//PO,所以EH平面ABC ,

          為直線AE與底面ABC 所成角,

          ………………………………………10分

          又PO=1/2AC=,也所以有EH=1/2PO=,

          由(Ⅰ)已證平面PBC,所以,即,

          ,

          于是

          所以直線AE與底面ABC 所成角的正弦值為

           

          查看答案和解析>>

          (本小題滿分12分)如圖,在矩形中,,又⊥平面

          )若在邊上存在一點,使,

          的取值范圍;

          )當邊上存在唯一點,使時,

          求二面角的余弦值.

           

           

           

           

           

          查看答案和解析>>

          如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

          (I)求證:PD⊥BC;

          (II)求二面角B—PD—C的正切值。

          【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

          BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.

          ∴PD⊥BC.

          第二問中解:取PD的中點E,連接CE、BE,

          為正三角形,

          由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,

          ∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進而求解。

           

          查看答案和解析>>

          如圖所示,已知直線不共面,直線,直線,又平面,平面平面,求證:三點不共線.

          查看答案和解析>>

          .(本小題滿分12分)如圖,在矩形中,,又⊥平面,

          (Ⅰ)若在邊上存在一點,使,

          的取值范圍;

          (Ⅱ)當邊上存在唯一點,使時,

          求二面角的余弦值.

           

           

          查看答案和解析>>


          同步練習冊答案