日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2.不等式的解集為R時(shí).實(shí)數(shù)c滿足條件 查看更多

           

          題目列表(包括答案和解析)

          若定義在區(qū)間D上的函數(shù)y=f(x)對于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式
          f(x1)+f(x2)
          2
          ≤f(
          x1+x2
          2
          )成立,則稱函數(shù)y=f(x)為區(qū)間D上的凸函數(shù).
          (1)證明:定義在R上的二次函數(shù)f(x)=ax2+bx+c(a<0)是凸函數(shù);
          (2)設(shè)f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]時(shí),f(x)≤1恒成立,求實(shí)數(shù)a的取值范圍,并判斷函數(shù)
          f(x)=ax2+x(a∈R,a≠0)能否成為R上的凸函數(shù);
          (3)定義在整數(shù)集Z上的函數(shù)f(x)滿足:①對任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
          試求f(x)的解析式;并判斷所求的函數(shù)f(x)是不是R上的凸函數(shù)說明理由.

          查看答案和解析>>

          若定義在區(qū)間D上的函數(shù)y=f(x)對于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式≤f()成立,則稱函數(shù)y=f(x)為區(qū)間D上的凸函數(shù).
          (1)證明:定義在R上的二次函數(shù)f(x)=ax2+bx+c(a<0)是凸函數(shù);
          (2)設(shè)f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]時(shí),f(x)≤1恒成立,求實(shí)數(shù)a的取值范圍,并判斷函數(shù)
          f(x)=ax2+x(a∈R,a≠0)能否成為R上的凸函數(shù);
          (3)定義在整數(shù)集Z上的函數(shù)f(x)滿足:①對任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
          試求f(x)的解析式;并判斷所求的函數(shù)f(x)是不是R上的凸函數(shù)說明理由.

          查看答案和解析>>

          若定義在區(qū)間D上的函數(shù)y=f(x)對于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式
          f(x1)+f(x2)
          2
          ≤f(
          x1+x2
          2
          )成立,則稱函數(shù)y=f(x)為區(qū)間D上的凸函數(shù).
          (1)證明:定義在R上的二次函數(shù)f(x)=ax2+bx+c(a<0)是凸函數(shù);
          (2)設(shè)f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]時(shí),f(x)≤1恒成立,求實(shí)數(shù)a的取值范圍,并判斷函數(shù)
          f(x)=ax2+x(a∈R,a≠0)能否成為R上的凸函數(shù);
          (3)定義在整數(shù)集Z上的函數(shù)f(x)滿足:①對任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
          試求f(x)的解析式;并判斷所求的函數(shù)f(x)是不是R上的凸函數(shù)說明理由.

          查看答案和解析>>

          若函數(shù)f(x)=x3+ax2+bx+c在R上有三個(gè)零點(diǎn),且同時(shí)滿足:
          ①f(1)=0;
          ②f(x)在x=0處取得極大值;
          ③f(x)在區(qū)間(0,1)上是減函數(shù).
          (Ⅰ)當(dāng)a=-2時(shí),求y=f(x)在點(diǎn)(2,f(2))處的切線方程;
          (Ⅱ)若g(x)=1-x,且關(guān)于x的不等式f(x)≥g(x)的解集為[1,+∞),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          若函數(shù)f(x)=x3+ax2+bx+c在R上有三個(gè)零點(diǎn),且同時(shí)滿足:
          ①f(1)=0;
          ②f(x)在x=0處取得極大值;
          ③f(x)在區(qū)間(0,1)上是減函數(shù).
          (Ⅰ)當(dāng)a=-2時(shí),求y=f(x)在點(diǎn)(2,f(2))處的切線方程;
          (Ⅱ)若g(x)=1-x,且關(guān)于x的不等式f(x)≥g(x)的解集為[1,+∞),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          C

          C

          D

          D

          A

          C

          A

          A

          D

          C

          C

          A

           

          二、填空題:本大題共4小題,每小題4分,共16分,把答案填在橫線上。

          13.   10          14.  15. ①②③     16. 8

          三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

          17.

          18.(1)x>1或x<-1

             (2)a>1時(shí),

                  0<a≤1/2時(shí),不存在

                  1/2<a<1時(shí),

          19. f (2+x) = f (2-x)   ∴f (4-2x) = f (2x)

          0≤2x≤2,即0≤x≤1,無解

          2≤2x≤4,即1≤x≤2,由f (x)<f (4-2x)得4/3<x≤2

          20.P1=11/12  P2=13/36

          21.

          22.(1)

          (2)

           

           


          同步練習(xí)冊答案