日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又即解得 ≤≤2 查看更多

           

          題目列表(包括答案和解析)

          解析:依題意得f(x)的圖象關(guān)于直線x=1對(duì)稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數(shù)f(x)是以4為周期的函數(shù).由f(x)在[3,5]上是增函數(shù)與f(x)的圖象關(guān)于直線x=1對(duì)稱得,f(x)在[-3,-1]上是減函數(shù).又函數(shù)f(x)是以4為周期的函數(shù),因此f(x)在[1,3]上是減函數(shù),f(x)在[1,3]上的最大值是f(1),最小值是f(3).

          答案:A

          查看答案和解析>>

          解答題:解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟

          過(guò)點(diǎn)P(1,0)作曲線C:y=x2(x∈(0,+∞))的切線,切點(diǎn)為Q1,設(shè)點(diǎn)Q1在x軸上的投影為P1(即過(guò)點(diǎn)Q1作x軸的垂線,垂足為P1),又過(guò)點(diǎn)P1作曲線C的切線,切點(diǎn)為Q2,設(shè)點(diǎn)Q2在x軸上的投影為P2,…,依次下去,得到一系列點(diǎn)Q1,Q2,Q3,…,Qn,…,設(shè)點(diǎn)Qn的橫坐標(biāo)為an,n∈N*

          (1)

          求數(shù)列{an}的通項(xiàng)公式;

          (2)

          比較an的大小,并證明你的結(jié)論;

          (3)

          設(shè),數(shù)列{bn}的前n項(xiàng)和為Sn,求證:對(duì)任意的正整數(shù)n均有≤Sn<2.

          查看答案和解析>>

          已知函數(shù)處取得極值2.

          ⑴ 求函數(shù)的解析式;

          ⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

          【解析】第一問(wèn)中利用導(dǎo)數(shù)

          又f(x)在x=1處取得極值2,所以,

          所以

          第二問(wèn)中,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

          解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分

          ⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

          當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                          …………12分

          .綜上所述,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是

           

          查看答案和解析>>

          仔細(xì)閱讀下面問(wèn)題的解法:
          設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍.
          解:由已知可得  a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學(xué)習(xí)以上問(wèn)題的解法,解決下面的問(wèn)題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對(duì)于(1)中的A,設(shè)g(x)=
          10-x
          10+x
          x∈A,試判斷g(x)的單調(diào)性;(不證)
          (3)又若B={x|
          10-x
          10+x
          >2x+a-5},若A∩B≠Φ,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          仔細(xì)閱讀下面問(wèn)題的解法:
          設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍.
          解:由已知可得 a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學(xué)習(xí)以上問(wèn)題的解法,解決下面的問(wèn)題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對(duì)于(1)中的A,設(shè)g(x)=數(shù)學(xué)公式x∈A,試判斷g(x)的單調(diào)性;(不證)
          (3)又若B={x|數(shù)學(xué)公式>2x+a-5},若A∩B≠Φ,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案