日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 取AE中點(diǎn)M.則.又由已知得.平面 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=alnx-x2+1.

          (1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

          (2)若a<0,且對(duì)任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

          【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          第二問中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

          ∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,

          即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識(shí)來解得。

          (1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          (2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

          ∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

          令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

          ∵g′(x)=-2x+1=(x>0),

          ∴-2x2+x+a≤0在x>0時(shí)恒成立,

          ∴1+8a≤0,a≤-,又a<0,

          ∴a的取值范圍是

           

          查看答案和解析>>

          研究問題:“已知關(guān)于x的不等式ax2-bx+c>0,解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”有如下解法:
          解:由cx2-bx+a>0且x≠0,所以
          (c×2-bx+a)
          x2
          >0得a(
          1
          x
          2-
          b
          x
          +c>0,設(shè)
          1
          x
          =y,得ay2-by+c>0,由已知得:1<y<2,即1<
          1
          x
          <2,∴
          1
          2
          <x<1所以不等式cx2-bx+a>0的解集是(
          1
          2
          ,1).
          參考上述解法,解決如下問題:已知關(guān)于x的不等式
          b
          (x+a)
          +
          (x+c)
          (x+d)
          <0的解集是:(-3,-1)∪(2,4),則不等式
          bx
          (ax-1)
          +
          (cx-1)
          (dx-1)
          <0的解集是
          (-
          1
          2
          ,-
          1
          4
          )∪(
          1
          3
          ,1)
          (-
          1
          2
          ,-
          1
          4
          )∪(
          1
          3
          ,1)

          查看答案和解析>>

          如圖,在三棱錐中,平面平面,,中點(diǎn).(Ⅰ)求點(diǎn)B到平面的距離;(Ⅱ)求二面角的余弦值.

          【解析】第一問中利用因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

          而平面平面,所以平面,再由題設(shè)條件知道可以分別以、,軸建立直角坐標(biāo)系得,,,,,

          故平面的法向量,故點(diǎn)B到平面的距離

          第二問中,由已知得平面的法向量,平面的法向量

          故二面角的余弦值等于

          解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

          而平面平面,所以平面,

            再由題設(shè)條件知道可以分別以、,軸建立直角坐標(biāo)系,得,,,

          ,,故平面的法向量

          ,故點(diǎn)B到平面的距離

          (Ⅱ)由已知得平面的法向量,平面的法向量

          故二面角的余弦值等于

           

          查看答案和解析>>

          若(x-i)i=y+2i,x,y∈R,則復(fù)數(shù)xyi=________.

          解析:由已知得:1+xi=y+2i,∴x=2,y=1,∴xyi=2+i.

          查看答案和解析>>

          精英家教網(wǎng)選作題:考生任選一題作答,如果多做,則按所做的第一題計(jì)分.
          A 如圖,△ABC的角平分線AD的延長(zhǎng)線交它的外接圓于點(diǎn)E.
          (I)證明:△ABE∽△ADC
          (II)若△ABC的面積S=
          1
          2
          AD•AE
          ,求∠BAC的大。
          B 已知曲線C1
          x=-4+cost
          y=3+sint
          (t為參數(shù)),C2
          x=8cosθ
          y=3sinθ
          (θ為參數(shù)).
          (1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
          (2)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t=
          π
          2
          ,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3
          x=3+2t
          y=-2+t
          (t為參數(shù))距離的最小值.                
          C 已知函數(shù)f(x)=|x-a|.
          (Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
          (Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案