日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (11)已知點(diǎn).直線.是坐標(biāo)原點(diǎn).是直線上的一點(diǎn).若.則的最小值是 查看更多

           

          題目列表(包括答案和解析)

          已知,,其中O是坐標(biāo)原點(diǎn),直線l過(guò)定點(diǎn)A,其方向向量,動(dòng)點(diǎn)P到直線l的距離為d,且d

          求動(dòng)點(diǎn)P的軌跡方程;

          直線m:與點(diǎn)P的軌跡相交于M,N兩個(gè)不同點(diǎn),當(dāng)時(shí),求直線m的傾斜角α的取值范圍;

          查看答案和解析>>

          已知點(diǎn),動(dòng)點(diǎn)N(x,y),直線NP,NQ的斜率分別為k1,k2,且(其中“”可以是四則運(yùn)算加、減、乘、除中的任意一種運(yùn)算),坐標(biāo)原點(diǎn)為O,點(diǎn)M(2,1).

          (Ⅰ)探求動(dòng)點(diǎn)N的軌跡方程;

          (Ⅱ)若“”表示乘法,動(dòng)點(diǎn)N的軌跡再加上P,Q兩點(diǎn)記為曲線C,直線l平行于直線OM,且與曲線C交于A,B兩個(gè)不同的點(diǎn).

          (ⅰ)若原點(diǎn)O在以AB為直徑的圓的內(nèi)部,試求出直線l在y軸上的截距m的取值范圍.

          (ⅱ)試求出△AOB面積的最大值及此時(shí)直線l的方程.

          查看答案和解析>>

          已知點(diǎn)P是曲線C:
          x=4cosθ
          y=3sinθ
          (θ為參數(shù),0≤θ≤π)上一點(diǎn),O為原點(diǎn).若直線OP的傾斜角為
          π
          4
          ,則點(diǎn)P的直角坐標(biāo)為
           

          查看答案和解析>>

          精英家教網(wǎng)已知點(diǎn)C為圓(x+1)2+y2=8的圓心,點(diǎn)A(1,0),P是圓上的動(dòng)點(diǎn),點(diǎn)Q在圓的半徑CP上,且
          MQ
          AP
          =0,
          AP
          =2
          AM

          (1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程;
          (2)設(shè)過(guò)點(diǎn)(0,2)且斜率為2的直線l與(1)中所求的曲線交于B,D兩點(diǎn),O為坐標(biāo)原點(diǎn),求△BDO的面積.

          查看答案和解析>>

          已知點(diǎn)P是圓x2+y2=1上一動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
          QM
          QP
          (λ為非零常數(shù))的點(diǎn)M的軌跡為曲線C.
          (1)求曲線C的方程;
          (2)若存在過(guò)點(diǎn)N(
          1
          2
          ,0)
          的直線l與曲線C相交于A、B兩點(diǎn),且
          OA
          OB
          =0(O為坐標(biāo)原點(diǎn)),求λ的取值范圍.

          查看答案和解析>>

           

          一.選擇題:本大題共12小題,每小題5分,共60分。

          (1)A       (2)B        (3)B      (4)A    (5)D       (6)D 

          (7)C       (8)C        (9)A     (10)C    (11)A      (12)B

           

          二.填空題:本大題共4小題,每小題5分,共20分。

          (13)        (14)2          (15)       (16)44

          三.解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟。

          (17)(本小題滿分10分)

          (Ⅰ)解法一:由正弦定理得.

          故      ,

          又      ,

          故     

          即      ,

          故      .

          因?yàn)?nbsp;   ,

          故     

                又      為三角形的內(nèi)角,

          所以    .                    ………………………5分

          解法二:由余弦定理得  .

                將上式代入    整理得

                故      ,  

          又      為三角形內(nèi)角,

          所以    .                    ………………………5分

          (Ⅱ)解:因?yàn)?sub>

          故      ,

          由已知 

           

          又因?yàn)?nbsp; .

          得      ,

          所以    ,

          解得    .    ………………………………………………10分

           

          (18)(本小題滿分12分)

           

          (Ⅰ)證明:

                       ∵,,

                       ∴

                       又∵底面是正方形,

                 ∴

                       又∵,

                 ∴

                 又∵,

                 ∴平面平面.    ………………………………………6分

          (Ⅱ)解法一:如圖建立空間直角坐標(biāo)系

          設(shè),則,在中,.

          、、、、

          的中點(diǎn),,

                  設(shè)是平面的一個(gè)法向量.

          則由 可求得.

          由(Ⅰ)知是平面的一個(gè)法向量,

          ,即.

          ∴二面角的大小為. ………………………………………12分

            解法二:

                   設(shè),則

          中,.

          設(shè),連接,過(guò),

          連結(jié),由(Ⅰ)知.

          在面上的射影為,

          為二面角的平面角.

          中,,,

          .

          .

          即二面角的大小為. …………………………………12分

           

          (19)(本小題滿分12分)

          解:(Ⅰ)設(shè)取到的4個(gè)球全是白球的概率,

          .          …………………………………6分

          (Ⅱ)設(shè)取到的4個(gè)球中紅球個(gè)數(shù)不少于白球個(gè)數(shù)的概率,

          . ………………12分

           

          (20)(本小題滿分12分)

          解:(I)設(shè)等比數(shù)列的首項(xiàng)為,公比為

          依題意,有

          代入, 得

          .               …………………………………2分

          解之得  …………………6分

                        …………………………………8分

          (II)又單調(diào)遞減,∴.   …………………………………9分

          . …………………………………10分

          ,即,,

          故使成立的正整數(shù)n的最小值為8.………………………12分

           

          (21)(本小題滿分12分)

          (Ⅰ)解:設(shè)雙曲線方程為,

          ,及勾股定理得

          由雙曲線定義得

          .               ………………………………………5分

          (Ⅱ),,雙曲線的兩漸近線方程為

          由題意,設(shè)的方程為,軸的交點(diǎn)為

          交于點(diǎn),交于點(diǎn),

          ;由,

          ,

          ,

          ,

          故雙曲線方程為.         ………………………………12分

           

          (22)(本小題滿分12分)

          解:(Ⅰ)

          又因?yàn)楹瘮?shù)上為增函數(shù),

            上恒成立,等價(jià)于

            上恒成立.

          ,

          故當(dāng)且僅當(dāng)時(shí)取等號(hào),而

            的最小值為.         ………………………………………6分

          (Ⅱ)由已知得:函數(shù)為奇函數(shù),

            , ,  ………………………………7分

          .

          切點(diǎn)為,其中,

          則切線的方程為:   ……………………8分

          ,

          .

          ,

          ,

          ,

          ,由題意知,

          從而.

          ,

          .                    ………………………………………12分

           


          同步練習(xí)冊(cè)答案