日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 綜上所述.函數(shù)的單調(diào)遞增區(qū)間是., 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)

           (1) 若函數(shù)上單調(diào),求的值;

          (2)若函數(shù)在區(qū)間上的最大值是,求的取值范圍.

          【解析】第一問,

          , 、

          第二問中,

          由(1)知: 當(dāng)時, 上單調(diào)遞增  滿足條件當(dāng)時,

          解: (1) ……3分

          , …………….7分

          (2)

          由(1)知: 當(dāng)時, 上單調(diào)遞增

            滿足條件…………..10分

          當(dāng)時,  

          …………13分

          綜上所述:

           

          查看答案和解析>>

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增,故當(dāng)時,取最小值

          于是對一切恒成立,當(dāng)且僅當(dāng).       、

          當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

          故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng)

          從而,

          所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.

           

          查看答案和解析>>

          設(shè)函數(shù)

          (1)當(dāng)時,求曲線處的切線方程;

          (2)當(dāng)時,求的極大值和極小值;

          (3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

          【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

          解:(1)當(dāng)……2分

             

          為所求切線方程!4分

          (2)當(dāng)

          ………………6分

          遞減,在(3,+)遞增

          的極大值為…………8分

          (3)

          ①若上單調(diào)遞增。∴滿足要求!10分

          ②若

          恒成立,

          恒成立,即a>0……………11分

          時,不合題意。綜上所述,實(shí)數(shù)的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)處取得極值2.

          ⑴ 求函數(shù)的解析式;

          ⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

          【解析】第一問中利用導(dǎo)數(shù)

          又f(x)在x=1處取得極值2,所以,

          所以

          第二問中,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

          解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分

          ⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

          當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                          …………12分

          .綜上所述,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是

           

          查看答案和解析>>

          如圖,,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

          (1)寫出、之間的等量關(guān)系,以及、之間的等量關(guān)系;

          (2)求證:);

          (3)設(shè),對所有,恒成立,求實(shí)數(shù)的取值范圍.

          【解析】第一問利用有,得到

          第二問證明:①當(dāng)時,可求得,命題成立;②假設(shè)當(dāng)時,命題成立,即有則當(dāng)時,由歸納假設(shè)及

          第三問 

          .………………………2分

          因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

          解:(1)依題意,有,,………………4分

          (2)證明:①當(dāng)時,可求得,命題成立; ……………2分

          ②假設(shè)當(dāng)時,命題成立,即有,……………………1分

          則當(dāng)時,由歸納假設(shè)及,

          解得不合題意,舍去)

          即當(dāng)時,命題成立.  …………………………………………4分

          綜上所述,對所有,.    ……………………………1分

          (3) 

          .………………………2分

          因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

          .……………2分

          由題意,有. 所以,

           

          查看答案和解析>>


          同步練習(xí)冊答案