日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又依題有.∴.∴拋物線方程為, 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)設(shè)b>0,橢圓方程為,拋物線方程為。如圖所示,過點F(0,b + 2)作x軸的平行線,與拋物線在第一象限的交點為G。已知拋物線在點G的切線經(jīng)過橢圓的右焦點F1。

          (1)求滿足條件的橢圓方程和拋物線方程;

          (2)點G、所在的直線截橢圓的右下區(qū)域為D,

          若圓C:與區(qū)域D有公共點,求m的最小值。

          查看答案和解析>>

          如圖,已知直線)與拋物線和圓都相切,的焦點.

          (Ⅰ)求的值;

          (Ⅱ)設(shè)上的一動點,以為切點作拋物線的切線,直線軸于點,以為鄰邊作平行四邊形,證明:點在一條定直線上;

          (Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,    直線軸交點為,連接交拋物線、兩點,求△的面積的取值范圍.

          【解析】第一問中利用圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

          ,解得舍去)

          設(shè)與拋物線的相切點為,又,得,.     

          代入直線方程得:,∴    所以,

          第二問中,由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

          設(shè),由(Ⅰ)知以為切點的切線的方程為.   

          ,得切線軸的點坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

          因為是定點,所以點在定直線

          第三問中,設(shè)直線,代入結(jié)合韋達定理得到。

          解:(Ⅰ)由已知,圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

          ,解得舍去).     …………………(2分)

          設(shè)與拋物線的相切點為,又,得,.     

          代入直線方程得:,∴    所以,.      ……(2分)

          (Ⅱ)由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

          設(shè),由(Ⅰ)知以為切點的切線的方程為.   

          ,得切線軸的點坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

          因為是定點,所以點在定直線上.…(2分)

          (Ⅲ)設(shè)直線,代入,  ……)得,                 ……………………………     (2分)

          ,

          的面積范圍是

           

          查看答案和解析>>

          已知拋物線方程為y2=4x,直線l的方程為x-
          3
          y+5=0
          ,在拋物線上有一動點P到y(tǒng)軸的距離為d1,到直線l的距離為d2,則d1+d2的最小值
          2
          2

          查看答案和解析>>

          拋物線方程為y2=p(x+1)(p>0),直線x+y=m與x軸的交點在拋物線的準(zhǔn)線的右邊.
          (1)求證:直線與拋物線總有兩個交點;
          (2)設(shè)直線與拋物線的交點為Q、R,OQ⊥OR,求p關(guān)于m的函數(shù)f(m)的表達式;
          (3)在(2)的條件下,若m變化,使得原點O到直線QR的距離不大于
          2
          2
          ,求p的值的范圍.

          查看答案和解析>>

          拋物線y2=2px(p>0)上有一點M,它的橫坐標(biāo)是3,它到焦點的距離是5,則拋物線方程為( 。

          查看答案和解析>>


          同步練習(xí)冊答案