日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以實(shí)數(shù)的取值范圍為.----------------------------------12分 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)處取得極值2.

          ⑴ 求函數(shù)的解析式;

          ⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

          【解析】第一問(wèn)中利用導(dǎo)數(shù)

          又f(x)在x=1處取得極值2,所以,

          所以

          第二問(wèn)中,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

          解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分

          ⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

          當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                          …………12分

          .綜上所述,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是

           

          查看答案和解析>>

          已知函數(shù) R).

          (Ⅰ)若 ,求曲線  在點(diǎn)  處的的切線方程;

          (Ⅱ)若  對(duì)任意  恒成立,求實(shí)數(shù)a的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

          第一問(wèn)中,利用當(dāng)時(shí),

          因?yàn)榍悬c(diǎn)為(), 則,                 

          所以在點(diǎn)()處的曲線的切線方程為:

          第二問(wèn)中,由題意得,即可。

          Ⅰ)當(dāng)時(shí),

          ,                                  

          因?yàn)榍悬c(diǎn)為(), 則,                  

          所以在點(diǎn)()處的曲線的切線方程為:.    ……5分

          (Ⅱ)解法一:由題意得,.      ……9分

          (注:凡代入特殊值縮小范圍的均給4分)

          ,           

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

          上單調(diào)遞增,                            ……12分

          要使恒成立,則,解得.……15分

          解法二:                 ……7分

                (1)當(dāng)時(shí),上恒成立,

          上單調(diào)遞增,

          .                  ……10分

          (2)當(dāng)時(shí),令,對(duì)稱軸

          上單調(diào)遞增,又    

          ① 當(dāng),即時(shí),上恒成立,

          所以單調(diào)遞增,

          ,不合題意,舍去  

          ②當(dāng)時(shí),, 不合題意,舍去 14分

          綜上所述: 

           

          查看答案和解析>>

          (2011•洛陽(yáng)二模)給出下列命題:
          ①設(shè)向量
          e1
          ,
          e2
          滿足|
          e1
          |=2,|
          e2
          |=1,
          e1
          e2
          的夾角為
          π
          3
          .若向量2t
          e1
          +7
          e2
          e1
          +t
          e2
          的夾角為鈍角,則實(shí)數(shù)t的取值范圍是(-7,-
          1
          2
          );
          ②已知一組正數(shù)x1,x2,x3,x4的方差為s2=
          1
          4
          (x12+x22+x32+x42)-4,則x1+1,x2+1,x3+1,x4+1的平均數(shù)為1
          ③設(shè)a,b,c分別為△ABC的角A,B,C的對(duì)邊,則方程x2+2ax+b2=o與x2+2cx-b2=0有公共根的充要條件是A=90°;
          ④若f(n)表示n2+1(n∈N)的各位上的數(shù)字之和,如112+1=122,1+2+2=5,所以f(n)=5,記f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,則f20(5)=11.
          上面命題中,假命題的序號(hào)是
           (寫出所有假命題的序號(hào)).

          查看答案和解析>>

           (考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)

          A.(不等式選做題)若關(guān)于的不等式存在實(shí)數(shù)解,則實(shí)數(shù)的取值范圍是            

          B.(幾何證明選做題)如圖,∠B=∠D,,,且AB=6,AC=4,AD=12,則BE=        

          C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線為參數(shù))和曲線上,則的最小值為                

           

          查看答案和解析>>

          (請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
          A.(不等式選做題)若不等式a≥|x+1|+|x-2|存在實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
           

          B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
           

          精英家教網(wǎng)

          C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系xoy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線C1
          x=3+cos θ
          y=4+sin θ
           (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案