日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)設(shè).則(顯然) 查看更多

           

          題目列表(包括答案和解析)

          已知中,,.設(shè),記.

          (1)   求的解析式及定義域;

          (2)設(shè),是否存在實數(shù),使函數(shù)的值域為?若存在,求出的值;若不存在,請說明理由.

          【解析】第一問利用(1)如圖,在中,由,,

          可得

          又AC=2,故由正弦定理得

           

          (2)中

          可得.顯然,,則

          1當m>0的值域為m+1=3/2,n=1/2

          2當m<0,不滿足的值域為;

          因而存在實數(shù)m=1/2的值域為.

           

          查看答案和解析>>

          考察等式:
               (*)
          其中n,m,r∈N*,r≤m<n且r≤n-m,
          某同學用概率論方法證明等式(*)如下:設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品,現(xiàn)從中隨機取出r件產(chǎn)品,記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則,k=0,1,…,r。顯然A0,A1,…,Ar為互斥事件,且(必然事件),因此,
          所以,,即等式(*)成立。
          對此,有的同學認為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學對上述證明方法的科學性與嚴謹性提出質(zhì)疑.
          現(xiàn)有以下四個判斷:①等式(*)成立;②等式(*)不成立;③證明正確;④證明不正確,試寫出所有正確判斷的序號(    )。

          查看答案和解析>>

          (2009•金山區(qū)二模)設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請先閱讀下列材料,然后回答問題.
          材料:已知函數(shù)g(x)=-
          1
          f(x)
          ,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個同學給出了如下解答:
          解:令u=-f(x)=-x2-x,則u=-(x+
          1
          2
          2+
          1
          4

          當x=-
          1
          2
          時,u有最大值,umax=
          1
          4
          ,顯然u沒有最小值,
          ∴當x=-
          1
          2
          時,g(x)有最小值4,沒有最大值.
          請回答:上述解答是否正確?若不正確,請給出正確的解答;
          (3)設(shè)an=
          f(n)
          2n-1
          ,請?zhí)岢龃藛栴}的一個結(jié)論,例如:求通項an.并給出正確解答.
          注意:第(3)題中所提問題單獨給分,.解答也單獨給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

          查看答案和解析>>

          考察等式:
          C0m
          Crn-m
          +
          C1m
          Cr-1n-m
          +…+
          Crm
          C0n-m
          =
          Crn
          (*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學用概率論方法證明等式(*)如下:
          設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機取出r件產(chǎn)品,
          記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則P(Ak)=
          Ckm
          Cr-kn-m
          Crn
          ,k=0,1,2,…,r.
          顯然A0,A1,…,Ar為互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
          因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
          C0m
          Crn-m
          +
          C1m
          Cr-1n-m
          +…+
          Crm
          C0n-m
          Crn

          所以
          C0m
          Crn-m
          +
          C1m
          Cr-1n-m
          +…+
          Crm
          C0n-m
          =
          Crn
          ,即等式(*)成立.
          對此,有的同學認為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學對上述證明方法的科學性與嚴謹性提出質(zhì)疑.現(xiàn)有以下四個判斷:
          ①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
          試寫出所有正確判斷的序號______.

          查看答案和解析>>

          有對稱中心的曲線叫做有心曲線,顯然圓、橢圓、雙曲線都是有心曲線.過有心曲線的中心的弦叫有心曲線的直徑(為研究方便,不妨設(shè)直徑所在直線的斜率存在).
          定理:過圓x2+y2=r2(r>0)上異于某直徑兩端點的任意一點,與這條直徑的兩個端點連線,則兩條直線的斜率之積為定值-1.寫出該定理在橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          中的推廣(不必證明):
          過橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          上異于某直徑兩端點的任意一點,與這條直徑的兩個端點連線,則兩條連線的斜率之積為定值-
          b2
          a2
          過橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          上異于某直徑兩端點的任意一點,與這條直徑的兩個端點連線,則兩條連線的斜率之積為定值-
          b2
          a2

          查看答案和解析>>


          同步練習冊答案