日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 7.某班有40名同學(xué).一次數(shù)學(xué)考試的平均成績?yōu)镸.如果把M當(dāng)作一個同學(xué)的分數(shù).與原來的40個分數(shù)一起.算出這41個分數(shù)的平均值為N.那么M:N為( ) 查看更多

           

          題目列表(包括答案和解析)

          長春市某中學(xué)高三(1)班40名學(xué)生在一次數(shù)學(xué)測驗中,成績?nèi)拷橛?00分與150分之間,將測驗成績按如下方式分成五組:第一組[100,110);第二組[110,120),…,第五組[140,150].右圖是按上述分組方法得到的頻率分布直方圖.
          (I)若成績在130分以上為優(yōu)秀,求該班在這次測驗中成績優(yōu)秀的人數(shù);
          (II)估計該班在這次測驗中的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
          (III)該班有3名學(xué)生因故未參加考試,如果他們參加考試,且彼此之間的成績不受影響,以已知樣本數(shù)據(jù)的頻率作為這3名同學(xué)成績的概率.試求這3名學(xué)生中至少有1人成績不低于130分的概率.

          查看答案和解析>>

          長春市某中學(xué)高三(1)班40名學(xué)生在一次數(shù)學(xué)測驗中,成績?nèi)拷橛?00分與150分之間,將測驗成績按如下方式分成五組:第一組[100,110);第二組[110,120),…,第五組[140,150].右圖是按上述分組方法得到的頻率分布直方圖.
          (I)若成績在130分以上為優(yōu)秀,求該班在這次測驗中成績優(yōu)秀的人數(shù);
          (II)估計該班在這次測驗中的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
          (III)該班有3名學(xué)生因故未參加考試,如果他們參加考試,且彼此之間的成績不受影響,以已知樣本數(shù)據(jù)的頻率作為這3名同學(xué)成績的概率.試求這3名學(xué)生中至少有1人成績不低于130分的概率.

          查看答案和解析>>

          長春市某中學(xué)高三(1)班40名學(xué)生在一次數(shù)學(xué)測驗中,成績?nèi)拷橛?00分與150分之間,將測驗成績按如下方式分成五組:第一組[100,110);第二組[110,120),…,第五組[140,150].右圖是按上述分組方法得到的頻率分布直方圖.
          (I)若成績在130分以上為優(yōu)秀,求該班在這次測驗中成績優(yōu)秀的人數(shù);
          (II)估計該班在這次測驗中的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
          (III)該班有3名學(xué)生因故未參加考試,如果他們參加考試,且彼此之間的成績不受影響,以已知樣本數(shù)據(jù)的頻率作為這3名同學(xué)成績的概率.試求這3名學(xué)生中至少有1人成績不低于130分的概率.

          查看答案和解析>>

          某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(均為整數(shù))分成六個分數(shù)段[40,50),[50,60),…,[90,100],畫出如下圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:
          (1)求70~80分數(shù)段的學(xué)生人數(shù);
          (2)估計這次考試中該學(xué)科的優(yōu)分率(80分及以上為優(yōu)分);
          (3)現(xiàn)根據(jù)本次考試分數(shù)分成下列六段(從低分段到高分段依次為第一組、第二組、…、第六組),為提高本班數(shù)學(xué)整體成績,決定組與組之間進行幫扶學(xué)習(xí).若選出的兩組分數(shù)之差大于30分(以分數(shù)段為依據(jù),不以具體學(xué)生分數(shù)為依據(jù)),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率。

          查看答案和解析>>

          某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(均為整數(shù))分成六個分數(shù)段[40,50),[50,60),…,[90,100],畫出如右圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:
          (I )求7O~80分數(shù)段的學(xué)生人數(shù);
          (II)估計這次考試中該學(xué)科的優(yōu)分率(80分及以上為優(yōu)分);
          (III)現(xiàn)根據(jù)本次考試分數(shù)分成的六段(從低分段到高分段依次為第一組、第二組、…、第六組),為提高本班數(shù)學(xué)整體成績,決定組與組之間進行幫扶學(xué)習(xí).若選出的兩組分數(shù)之差大于30分(以分數(shù)段為依據(jù),不以具體學(xué)生分數(shù)為依據(jù)),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.

          查看答案和解析>>

          一、選擇題:

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          C

          D

          D

          A

          B

          D

          B

          C

          B

          C

          D

          B

          1.提示:所以,故選C。

          2.提示:命題P:,所以命題P是假命題,

          命題Q

          當(dāng)時,。 ,所以以命題Q是真命題,故選D。故選A。

          3.提示:,所以,故選D。

          4.提示:在AB上取點D,使得,則點P只能在AD內(nèi)運動,則

          5.提示:故選B。

          6.提示:由圖(1)改為圖(2)后每次循環(huán)時的值都為1,因此運行過程出現(xiàn)無限循環(huán),故選D

          7.提示:設(shè)全班40個人的總分為S,

          ,故選B。

          8.提示:

          所以約束條件為表示的平面區(qū)域是以點O(0,0),,N(0,1),Q(2,3)為頂點的平行四邊形(包括邊界),故當(dāng)時,的最大值是4,故選C。

          9.提示:由

          如圖

          過A作于M,則

           .

          故選B.

          10.提示:不妨設(shè)點(2,0)與曲線上不同的三的點距離為分別,它們組成的等比數(shù)列的公比為若令,顯然,又所以,不能取到。故選B。

          11.提示:使用特值法:取集合當(dāng)可以排除A、B;

          取集合,當(dāng)可以排除C;故選D;

          12.提示:n棱柱有個頂點,被平面截去一個三棱錐后,可以分以下6種情形(圖1~6)

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          在圖4,圖6所示的情形,還剩個頂點;

          在圖5的情形,還剩個頂點;

          在圖2,圖3的情形,還剩個頂點;

          在圖1的情形,還剩下個頂點.故選B.

          二、填空題:

          13.   

          提示:由

          14. 

          提示:斜率 ,切點,所以切線方程為:

          15.

          提示:當(dāng)時,不等式無解,當(dāng)時,不等式變?yōu)?sub> ,

          由題意得,所以,

          16.

          三、解答題:

          17.解:① ∵的定義域為R;

          ② ∵,

           ∴為偶函數(shù);

          ③ ∵,  ∴是周期為的周期函數(shù);

          ④ 當(dāng)時,= ,

          ∴當(dāng)單調(diào)遞減;當(dāng)時,

          =,

          單調(diào)遞增;又∵是周期為的偶函數(shù),∴上單調(diào)遞增,在上單調(diào)遞減();

          ⑤ ∵當(dāng)

          當(dāng).∴的值域為;

           ⑥由以上性質(zhì)可得:上的圖象如圖所示:

           

           

           

           

          18.解:(Ⅰ)取PC的中點G,連結(jié)EG,GD,則

          由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。

          所以四邊形FEGD為矩形,因為G為等腰Rt△RPD斜邊PC的中點,

          所以DG⊥PC,

            1. 所以DG⊥平面PBC.

              因為DG//EF,所以EF⊥平面PBC。

              (Ⅱ) 

               

               

               

               

              19.解:(1);根據(jù)題意:的二個根;

                   由于; 

                   所以

                    (2)由的二個根;所以;

              所以:

                    

                   又

              所以:;故:線段的中點在曲線上;

              20.解:

              分別記“客人瀏覽甲、乙、丙景點”為事件。則相互獨立,且

              客人瀏覽景點數(shù)可能取值為0、1、2、3;相應(yīng)在客人沒有瀏覽的景點數(shù)的可能取值為3、2、1、0

              的分布列為

              1

              3

              p

              0.76

              0.24

              (2)

              上單調(diào)遞增,那么要上單調(diào)遞增,必須,即

               

              21.解:(1)由已知,當(dāng)時,

              ,

              當(dāng)時,,

              兩式相減得:

              當(dāng)時,適合上式,

              (2)由(1)知

              當(dāng)時,

              兩式相減得:

              ,則數(shù)列是等差數(shù)列,首項為1,公差為1。

              (3)

              要使得恒成立,

              恒成立,

              恒成立。

              當(dāng)為奇數(shù)時,即恒成立,又的最小值為1,

              當(dāng)為偶數(shù)時,即恒成立,又的最大值為,

              為整數(shù),

              ,使得對任意,都有

              22.解:(1)由題意知

              解得,故

              所以函數(shù)在區(qū)間 上單調(diào)遞增。

              (2)由

              所以點G的坐標為

              函數(shù)在區(qū)間 上單調(diào)遞增。

              所以當(dāng)時,取得最小值,此時點F、G的坐標分別為

              由題意設(shè)橢圓方程為,由于點G在橢圓上,得

              解得

              所以得所求的橢圓方程為。

              (3)設(shè)C,D的坐標分別為,則

              ,得,

              因為,點C、D在橢圓上,,

              消去。又,解得

              所以實數(shù)的取值范圍是

               

               

               

               

               

               

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>