日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又 ???4分 查看更多

           

          題目列表(包括答案和解析)

          中,,分別是角所對邊的長,,且

          (1)求的面積;

          (2)若,求角C.

          【解析】第一問中,由又∵的面積為

          第二問中,∵a =7  ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:         

          又C為內(nèi)角      ∴

          解:(1) ………………2分

             又∵                   ……………………4分

               ∴的面積為           ……………………6分

          (2)∵a =7  ∴c=5                                  ……………………7分

           由余弦定理得:      

              ∴                                     ……………………9分

          又由余弦定理得:         

          又C為內(nèi)角      ∴                           ……………………12分

          另解:由正弦定理得:  ∴ 又  ∴

           

          查看答案和解析>>

          已知在中,,,,解這個三角形;

          【解析】本試題主要考查了正弦定理的運用。由正弦定理得到:,然后又       

          再又得到c。

          解:由正弦定理得到:

                                ……4分

                ……8分

              

           

          查看答案和解析>>

          (本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)

          在平行四邊形中,已知過點的直線與線段分別相交于點。若。

          (1)求證:的關(guān)系為;

          (2)設(shè),定義函數(shù),點列在函數(shù)的圖像上,且數(shù)列是以首項為1,公比為的等比數(shù)列,為原點,令,是否存在點,使得?若存在,請求出點坐標;若不存在,請說明理由。

          (3)設(shè)函數(shù)上偶函數(shù),當,又函數(shù)圖象關(guān)于直線對稱, 當方程上有兩個不同的實數(shù)解時,求實數(shù)的取值范圍。

          查看答案和解析>>

          設(shè)點是拋物線的焦點,是拋物線上的個不同的點().

          (1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得

          (2)當時,若

          求證:;

          (3) 當時,某同學(xué)對(2)的逆命題,即:

          “若,則.”

          開展了研究并發(fā)現(xiàn)其為假命題.

          請你就此從以下三個研究方向中任選一個開展研究:

          ① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

          ② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

          ③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

          【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

          【解析】第一問利用拋物線的焦點為,設(shè),

          分別過作拋物線的準線的垂線,垂足分別為.

          由拋物線定義得到

          第二問設(shè),分別過作拋物線的準線垂線,垂足分別為.

          由拋物線定義得

          第三問中①取時,拋物線的焦點為,

          設(shè),分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

          ,

          ,不妨取;;;

          解:(1)拋物線的焦點為,設(shè),

          分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

           

          因為,所以

          故可取滿足條件.

          (2)設(shè),分別過作拋物線的準線垂線,垂足分別為.

          由拋物線定義得

             又因為

          所以.

          (3) ①取時,拋物線的焦點為,

          設(shè),分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

          ,

          ,不妨取;;,

          ,

          .

          ,,,是一個當時,該逆命題的一個反例.(反例不唯一)

          ② 設(shè),分別過

          拋物線的準線的垂線,垂足分別為

          及拋物線的定義得

          ,即.

          因為上述表達式與點的縱坐標無關(guān),所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

          ,所以.

          (說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點,均為反例.)

          ③ 補充條件1:“點的縱坐標)滿足 ”,即:

          “當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設(shè)

          分別過作拋物線準線的垂線,垂足分別為,由,

          及拋物線的定義得,即,則

          又由,所以,故命題為真.

          補充條件2:“點與點為偶數(shù),關(guān)于軸對稱”,即:

          “當時,若,且點與點為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)

           

          查看答案和解析>>

          在棱長為的正方體中,是線段的中點,.

          (1) 求證:^;

          (2) 求證://平面

          (3) 求三棱錐的表面積.

          【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運用。第一問中,利用,得到結(jié)論,第二問中,先判定為平行四邊形,然后,可知結(jié)論成立。

          第三問中,是邊長為的正三角形,其面積為,

          因為平面,所以,

          所以是直角三角形,其面積為,

          同理的面積為, 面積為.  所以三棱錐的表面積為.

          解: (1)證明:根據(jù)正方體的性質(zhì),

          因為,

          所以,又,所以,

          所以^.               ………………4分

          (2)證明:連接,因為,

          所以為平行四邊形,因此,

          由于是線段的中點,所以,      …………6分

          因為,平面,所以∥平面.   ……………8分

          (3)是邊長為的正三角形,其面積為,

          因為平面,所以,

          所以是直角三角形,其面積為,

          同理的面積為,              ……………………10分

          面積為.          所以三棱錐的表面積為

           

          查看答案和解析>>


          同步練習(xí)冊答案