日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又.故. 9分 查看更多

           

          題目列表(包括答案和解析)

          中,是三角形的三內(nèi)角,是三內(nèi)角對(duì)應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列

          (Ⅰ)求角的大;

          (Ⅱ)若,求的值.

          【解析】第一問中利用依題意,故

          第二問中,由題意又由余弦定理知

          ,得到,所以,從而得到結(jié)論。

          (1)依題意,故……………………6分

          (2)由題意又由余弦定理知

          …………………………9分

             故

                     代入

           

          查看答案和解析>>

          數(shù)列首項(xiàng),前項(xiàng)和滿足等式(常數(shù),……)

          (1)求證:為等比數(shù)列;

          (2)設(shè)數(shù)列的公比為,作數(shù)列使 (……),求數(shù)列的通項(xiàng)公式.

          (3)設(shè),求數(shù)列的前項(xiàng)和.

          【解析】第一問利用由

          兩式相減得

          時(shí),

          從而  即,而

          從而  故

          第二問中,     又為等比數(shù)列,通項(xiàng)公式為

          第三問中,

          兩邊同乘以

          利用錯(cuò)位相減法得到和。

          (1)由

          兩式相減得

          時(shí),

          從而   ………………3分

            即,而

          從而  故

          對(duì)任意,為常數(shù),即為等比數(shù)列………………5分

          (2)    ……………………7分

          為等比數(shù)列,通項(xiàng)公式為………………9分

          (3)

          兩邊同乘以

          ………………11分

          兩式相減得

           

          查看答案和解析>>

          已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).

          (1)求函數(shù)f(x)的表達(dá)式;

          (2)若數(shù)列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;

          (3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

          【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

          由f(x)=2x只有一解,即=2x,

          也就是2ax2-2(1+b)x=0(a≠0)只有一解,

          ∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

          (2)an+1=f(an)=(n∈N*),bn-1, ∴,

          ∴{bn}為等比數(shù)列,q=.又∵a1,∴b1-1=,

          bn=b1qn-1n-1n(n∈N*).……………………………9分

          (3)證明:∵anbn=an=1-an=1-,

          ∴a1b1+a2b2+…+anbn+…+<+…+

          =1-<1(n∈N*).

           

          查看答案和解析>>

          已知函數(shù) R).

          (Ⅰ)若 ,求曲線  在點(diǎn)  處的的切線方程;

          (Ⅱ)若  對(duì)任意  恒成立,求實(shí)數(shù)a的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

          第一問中,利用當(dāng)時(shí),

          因?yàn)榍悬c(diǎn)為(), 則,                 

          所以在點(diǎn)()處的曲線的切線方程為:

          第二問中,由題意得,即可。

          Ⅰ)當(dāng)時(shí),

          ,                                  

          因?yàn)榍悬c(diǎn)為(), 則,                  

          所以在點(diǎn)()處的曲線的切線方程為:.    ……5分

          (Ⅱ)解法一:由題意得,.      ……9分

          (注:凡代入特殊值縮小范圍的均給4分)

          ,           

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

          上單調(diào)遞增,                            ……12分

          要使恒成立,則,解得.……15分

          解法二:                 ……7分

                (1)當(dāng)時(shí),上恒成立,

          上單調(diào)遞增,

          .                  ……10分

          (2)當(dāng)時(shí),令,對(duì)稱軸

          上單調(diào)遞增,又    

          ① 當(dāng),即時(shí),上恒成立,

          所以單調(diào)遞增,

          ,不合題意,舍去  

          ②當(dāng)時(shí),, 不合題意,舍去 14分

          綜上所述: 

           

          查看答案和解析>>

          已知點(diǎn)),過點(diǎn)作拋物線的切線,切點(diǎn)分別為、(其中).

          (Ⅰ)若,求的值;

          (Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;

          (Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,

          求圓面積的最小值.

          【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。

          中∵直線與曲線相切,且過點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。

          (3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

          (Ⅰ)由可得,.  ------1分

          ∵直線與曲線相切,且過點(diǎn),∴,即,

          ,或, --------------------3分

          同理可得:,或----------------4分

          ,∴,. -----------------5分

          (Ⅱ)由(Ⅰ)知,,,則的斜率,

          ∴直線的方程為:,又,

          ,即. -----------------7分

          ∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分

          故圓的面積為. --------------------9分

          (Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,    ………10分

          當(dāng)且僅當(dāng),即,時(shí)取等號(hào).

          故圓面積的最小值

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案