日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線:(為常數(shù))過橢圓()的上頂點(diǎn)和左焦點(diǎn).直線被圓截得的弦長為.學(xué)科網(wǎng) 查看更多

           

          題目列表(包括答案和解析)

          已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且過A(-2,0)、B(2,0)、C(1,
          3
          2
          )三點(diǎn).
          (1)求橢圓C的方程;
          (2)設(shè)點(diǎn)P是射線y=
          2
          x(x≥
          2
          3
          )
          上(非端點(diǎn))任意一點(diǎn),由點(diǎn)P向橢圓C引兩條切線PQ、PT(Q、T為切點(diǎn)),求證:直線QT的斜率為常數(shù).

          查看答案和解析>>

          精英家教網(wǎng)已知橢圓E的方程為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)雙曲線
          x2
          a2
          -
          y2
          b2
          =1的兩條漸近線為l1和l2,過橢圓E的右焦點(diǎn)F作直線l,使得l⊥l2于點(diǎn)C,又l與l1交于點(diǎn)P,l與橢圓E的兩個(gè)交點(diǎn)從上到下依次為A,B(如圖).
          (1)當(dāng)直線l1的傾斜角為30°,雙曲線的焦距為8時(shí),求橢圓的方程;
          (2)設(shè)
          PA
          =λ1
          AF
          ,
          PB
          =λ2
          BF
          ,證明:λ12為常數(shù).

          查看答案和解析>>

          已知橢圓G:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率為
          2
          2
          ,右焦點(diǎn)F(1,0).過點(diǎn)F作斜率為k(k≠0)的直線l,交橢圓G于A、B兩點(diǎn),M(2,0)是一個(gè)定點(diǎn).如圖所示,連AM、BM,分別交橢圓G于C、D兩點(diǎn)(不同于A、B),記直線CD的斜率為k1
          (Ⅰ)求橢圓G的方程;
          (Ⅱ)在直線l的斜率k變化的過程中,是否存在一個(gè)常數(shù)λ,使得k1=λk恒成立?若存在,求出這個(gè)常數(shù)λ;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          精英家教網(wǎng)已知橢圓
          x2
          a2
          +
          y2
          a2
          =1(a>b>0)
          的離心率為
          2
          2
          ,右焦點(diǎn)為F(1,0),直線l經(jīng)過點(diǎn)F且與橢圓交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
          (1)求橢圓的方程;
          (2)若P是橢圓上的一個(gè)動(dòng)點(diǎn),求|PO|2+|PF|2的最大值和最小值;
          (3)當(dāng)直線l繞點(diǎn)F轉(zhuǎn)動(dòng)時(shí),試問:在x軸上是否存在定點(diǎn)S,使
          SA
          SB
          為常數(shù),若存在,求出定點(diǎn)S的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          已知橢圓和橢圓的離心率相同,且點(diǎn)在橢圓上.
          (1)求橢圓的方程;
          (2)設(shè)為橢圓上一點(diǎn),過點(diǎn)作直線交橢圓、兩點(diǎn),且恰為弦的中點(diǎn)。求證:無論點(diǎn)怎樣變化,的面積為常數(shù),并求出此常數(shù).

          查看答案和解析>>

          或7                   ………………………………14分

          16.(本小題滿分14分)

          (1)證明:E、P分別為AC、A′C的中點(diǎn),

                  EP∥A′A,又A′A平面AA′B,EP平面AA′B

                 ∴即EP∥平面A′FB                  …………………………………………5分

          (2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

             ∴BC⊥A′E,∴BC⊥平面A′EC

               BC平面A′BC

             ∴平面A′BC⊥平面A′EC             …………………………………………9分

          (3)證明:在△A′EC中,P為A′C的中點(diǎn),∴EP⊥A′C,

            在△A′AC中,EP∥A′A,∴A′A⊥A′C

                由(2)知:BC⊥平面A′EC   又A′A平面A′EC

                ∴BC⊥AA′

                ∴A′A⊥平面A′BC                   …………………………………………14分

                              …………………………………………15分

          (本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)

          18.(本小題滿分15分)

          (1)延長BD、CE交于A,則AD=,AE=2

               則S△ADE= S△BDE= S△BCE=

                ∵S△APQ=,∴

                ∴             …………………………………………7分

          (2)

                    =?

          …………………………………………12分

              當(dāng),

          ,            

          …………………………………………15分

          (3)

          設(shè)上式為 ,假設(shè)取正實(shí)數(shù),則?

          當(dāng)時(shí),,遞減;

          當(dāng),遞增. ……………………………………12分

                          

              

          ∴不存在正整數(shù),使得

                            …………………………………………16分

          顯然成立             ……………………………………12分

          當(dāng)時(shí),

          使不等式成立的自然數(shù)n恰有4個(gè)的正整數(shù)p值為3

                                    ……………………………………………16分

           

           

           

           

           

           

           

          泰州市2008~2009學(xué)年度第二學(xué)期期初聯(lián)考

          高三數(shù)學(xué)試題參考答案

          附加題部分

          度單位.(1),,由

          所以

          為圓的直角坐標(biāo)方程.  ……………………………………3分

          同理為圓的直角坐標(biāo)方程. ……………………………………6分

          (2)由      

          相減得過交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分

          D.證明:(1)因?yàn)?sub>

              所以          …………………………………………4分

              (2)∵   …………………………………………6分

              同理,,……………………………………8分

              三式相加即得……………………………10分

          22.(必做題)(本小題滿分10分)

          解:(1)記“恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)”為事件的, 則其概率為                …………………………………………4分

              答:恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率為

          (1),,

          ,

                        ……………………………………3分

          (2)平面BDD1的一個(gè)法向量為

          設(shè)平面BFC1的法向量為

          得平面BFC1的一個(gè)法向量

          ∴所求的余弦值為                     ……………………………………6分

          (3)設(shè)

          ,由

          當(dāng)時(shí),

          當(dāng)時(shí),∴   ……………………………………10分

           


          同步練習(xí)冊答案