日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 正項(xiàng)數(shù)列滿足.Sn為其前n項(xiàng)和.且. 查看更多

           

          題目列表(包括答案和解析)

          (12分)正項(xiàng)數(shù)列滿足,Sn為其前n項(xiàng)和,且(n≥1).

          (Ⅰ)求數(shù)列的通項(xiàng)公式;

          (Ⅱ)等比數(shù)列的各項(xiàng)為正,其前n項(xiàng)和為Tn,且b1b2b3=8,又成等差數(shù)列,求Tn.

          查看答案和解析>>

          12、已知正項(xiàng)數(shù)列{an},其前n項(xiàng)和Sn滿足6Sn=an2+3an+2,且a1,a3,a11成等比數(shù)列,則數(shù)列{an}的通項(xiàng)為
          an=3n-1

          查看答案和解析>>

          已知正項(xiàng)數(shù)列{an}滿足:a1=1,Sn=
          1
          2
          (an+
          1
          an
          )
          ,其中Sn為其前n項(xiàng)和,則Sn=
          n
          n

          查看答案和解析>>

          數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),點(diǎn)(an,Sn)在直線y=2x-3n上,
          (1)若數(shù)列{an+c}成等比數(shù)列,求常數(shù)c的值;
          (2)數(shù)列{an}中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,請求出一組適合條件的項(xiàng);若不存在,請說明理由.
          (3)若bn=
          1
          3
          an
          +1,請求出一個(gè)滿足條件的指數(shù)函數(shù)g(x),使得對于任意的正整數(shù)n恒有
          n
          k=1
          g(k)
          (bk+1)(bk+1+1)
          1
          3
          成立,并加以證明.(其中為連加號,如:
          n
          i-1
          an=a1+a2+…+an

          查看答案和解析>>

          數(shù)列{an}是公差不為0的等差數(shù)列,其前n項(xiàng)和為Sn,且S9=135,a3,a4,a12成等比數(shù)列.
          (Ⅰ)求{an}的通項(xiàng)公式;
          (Ⅱ)是否存在正整數(shù)m,使
          a
          2
          m
          +
          a
          2
          m+2
          2am+1
          仍為數(shù)列{an}中的一項(xiàng)?若存在,求出滿足要求的所有正整數(shù)m;若不存在,說明理由.

          查看答案和解析>>

          一.選擇題

          序號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          B

          A

          B

          D

          D

          C

          A

          A

          C

          B

          D

          A

           

          二填空題

          13. 2或8;        14. ;            15.;           16..

          三.解答題

          17.解:(Ⅰ)

          ………………………………………………………………4分

          …………………………6分

          (Ⅱ) …………………………………………………8分

          …………………………………………………………………………10分

          ………………………………………………………………………………12分

           

          18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.

          在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4. ……………………………2分

          .………………………………………………………………4分

          則V=.     ……………………………………………………………… 6分

          (Ⅱ)∵PA=CA,F(xiàn)為PC的中點(diǎn),∴AF⊥PC.            ……………………………………8分

          ∵PA⊥平面ABCD,∴PA⊥CD.

          ∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.

          ∵E為PD中點(diǎn),F(xiàn)為PC中點(diǎn),∴EF∥CD.則EF⊥PC.     ………………………………10分

          ∵AF∩EF=F,∴PC⊥平面AEF.………………………………………………………………12分

           

          19.設(shè)第一個(gè)匣子里的三把鑰匙為A,B,C,第二個(gè)匣子里的三把鑰匙為a,b,c(設(shè)A,a能打開所有門,B只能打開第一道門,b只能打開第二道門,C,c不能打開任何一道門)

          (Ⅰ)第一道門打不開的概率為;……………………………………………………………5分

          (Ⅱ)能進(jìn)入第二道門的情況有Aa,Ab,Ac,Ba,Bb,而二把鑰匙的不同情況有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9種,故能進(jìn)入第二道門的概率為……………………………………………………………12分

           

          20.(Ⅰ)依題

           

          …………………………………………………3分

          為等差數(shù)列,a1=1,d=2

          ………………………………………………………………………………………………5分

          (Ⅱ)設(shè)公比為q,則由b1b2b3=8,bn>0…………………………………………………6分

          成等差數(shù)列

          ………………………………………………………………………………………8分

          …………………………………………………………………………………10分

          ……………………………………………………………………12分

           

          21解:(Ⅰ)依題PN為AM的中垂線

          …………………………………………………2分

          又C(-1,0),A(1,0)

          所以N的軌跡E為橢圓,C、A為其焦點(diǎn)…………………………………………………………4分

          a=,c=1,所以為所求………………………………………………………5分

          (Ⅱ)設(shè)直線的方程為:y=k(x-1),代入橢圓E的方程:x2+2y2=2得:

          (1+2k2)x2-4k2x+2k2-2=0………………(1)

          設(shè)G(x1,y1)、H(x2,y2),則x1,x2是(1)的兩個(gè)根.

          …………………………………………………………7分

          依題

          ………………………………………………………9分

          解得:………………………………………………………………………12分

           

          22.解法(一):

             時(shí),……①

          時(shí),恒成立,

          時(shí),①式化為……②

          時(shí),①式化為……③…………………………………………………5分

          ,則…………………………7分

          所以

          故由②,由③………………………………………………………………………13分

          綜上時(shí),恒成立.………………………………………………14分

          解法(二):

             時(shí),……①

          時(shí),,,不合題意…………………………………………………2分

          恒成立

          上為減函數(shù),

          ,矛盾,…………………………………………………………………………………5分

          ,=

             若,故在[-1,1]內(nèi),

          ,得,矛盾.

          依題意,  解得

          綜上為所求.……………………………………………………………………………14分

           

           

           

           

           

           

           


          同步練習(xí)冊答案