日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅲ)若.函數(shù)在和處取得極值.且.是坐標原點.證明:直線與直線不可能垂直. 查看更多

           

          題目列表(包括答案和解析)

          函數(shù)f(x)=x3+ax2-bx+c,a,b,c∈R,已知方程f(x)=0有三個實根x1,x2,x3,即f(x)=(x-x1)(x-x2)(x-x3
          (1)求x1+x2+x3,x1x2+x2x3+x1x3和x1x2x3的值.(結果用a,b,c表示)
          (2)若a∈Z,b∈Z且|b|<2,f(x)在x=α,x=β處取得極值且-1<α<0<β<1,試求此方程三個根兩兩不等時c的取值范圍.

          查看答案和解析>>

          函數(shù)f(x)=x3+ax2-bx+c,a,b,c∈R,已知方程f(x)=0有三個實根x1,x2,x3,即f(x)=(x-x1)(x-x2)(x-x3
          (1)求x1+x2+x3,x1x2+x2x3+x1x3和x1x2x3的值.(結果用a,b,c表示)
          (2)若a∈Z,b∈Z且|b|<2,f(x)在x=α,x=β處取得極值且-1<α<0<β<1,試求此方程三個根兩兩不等時c的取值范圍.

          查看答案和解析>>

          設函數(shù)處取得極值,且曲線在點處的切線垂直于直線.

          (Ⅰ) 求的值;

          (Ⅱ)求曲線和直線所圍成的封閉圖形的面積;

          (Ⅲ)設函數(shù),若方程有三個不相等的實根,求的取值范圍.

          【解析】本試題主要考查了導數(shù)的運用。利用導數(shù)求解曲邊梯形的面積,以及求解函數(shù)與方程的根的問題的綜合運用。

           

          查看答案和解析>>

          設函數(shù)處取得極值,且曲線在點處的切線垂直于直線.
          (Ⅰ) 求的值;
          (Ⅱ)求曲線和直線所圍成的封閉圖形的面積;
          (Ⅲ)設函數(shù),若方程有三個不相等的實根,求的取值范圍.

          查看答案和解析>>

          (12分)已知函數(shù)處取得極值,且在點處的切線的斜率為2。

            (1)求a、b的值;

            (2)求函數(shù)的單調(diào)區(qū)間和極值;

          (3)若關于x的方程上恰有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍。

           

          查看答案和解析>>

          一、選擇題(每小題5分,共50分)

          二、填空題(每小題4分,共28分)

          三、解答題

          18.解:(Ⅰ)由已有

                                              (4分)

           

                                                      (6分)

           

          (Ⅱ)由(1)                                 (8分)

          所以              (10分)

                                                                (12分)

                                            (14分)

           

          19.解:(Ⅰ)同學甲同學恰好投4次達標的概率           (4分)

          (Ⅱ)可取的值是

                                                        (6分)

                                                      (8分)

                                                        (10分)

          的分布列為

          3

          4

          5

                                                                                (12分)

          所以的數(shù)學期望為                   (14分)

           

          20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

          ∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

           

          (Ⅱ)取CD的中點E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

          建立如圖所示空間直角坐標系,則

          A(0,,0,0),P(0,0,),C(,0),D(,0)

          ,,                  (6分)

          易求為平面PAC的一個法向量.

          為平面PDC的一個法向量                                  (9分)

          ∴cos

          故二面角D-PC-A的正切值為2.  (11分)

          (Ⅲ)設,則

             ,

          解得點,即   (13分)

          (不合題意舍去)或

          所以當的中點時,直線與平面所成角的正弦值為   (15分)

           

          21.解:(Ⅰ)設直線的方程為:

          ,所以的方程為                     (4分)

          點的坐標為.

          可求得拋物線的標準方程為.                                       (6分)

          (Ⅱ)設直線的方程為,代入拋物線方程并整理得    (8分)     

          ,則

                                                (11分)

          時上式是一個與無關的常數(shù).

          所以存在定點,相應的常數(shù)是.                                     (14分)

           

          22.解:(Ⅰ)當               (2分)

          上遞增,在上遞減

          所以在0和2處分別達到極大和極小,由已知有

          ,因而的取值范圍是.                                   (4分)

          (Ⅱ)當時,

            1. 市一次模理數(shù)參答―3(共4頁)

                                                      (7分)

              ,

              上遞減,在上遞增.

              從而上遞增

              因此                           (10分)

              (Ⅲ)假設,即=

                                                   (12分)

              ,(x)=0的兩根可得,

              從而有

              ≥2,這與<2矛盾.                                

              故直線與直線不可能垂直.                                               (15分)

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>