日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 21. 將平行四邊形紙片ABCD按如圖方式折疊.使點C與A重合.點D落到D′ 處.折痕為EF.(1)求證:△ABE≌△AD′F,(2)連接CF.判斷四邊形AECF是什么特殊四邊形?證明你的結(jié)論. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分6分,請在下列兩個小題中,任選其一完成即可)
          (1)解方程:x2+3x-2=0;
          (2)如圖,在邊長為1個單位長度的正方形方格紙中建立直角坐標系,△ABC各頂點的坐標為:A(-5,4)、B(-1,1)、C(-5,1).
          ①將△ABC繞著原點O順時針旋轉(zhuǎn)90°得到△A′B′C′,請在圖中畫出△A′B′C′;
          ②寫出A′點的坐標.

          查看答案和解析>>

          加試題(本小題滿分20分,其中(1)、(2)、(3)題各3分,(4)題11分)
          (1)一個正數(shù)的平方根為3-a和2a+3,則這個正數(shù)是
          81
          81

          (2)若x2+2x+y2-6y+10=0,則xy=
          -1
          -1

          (3)已知a,b分別是6-
          13
          的整數(shù)部分和小數(shù)部分,則2a-b=
          13
          13

          (4)閱讀下面的問題,并解答問題:
          1)如圖1,等邊△ABC內(nèi)有一點P,若點P到頂點A,B,C的距離分別為3,4,5,求∠APB的度數(shù)是多少?(請在下列橫線上填上合適的答案)
          分析:由于PA,PB,PC不在同一個三角形中,為了解決本題我們可以將△ABP繞頂點A逆時針旋轉(zhuǎn)到△ACP′處,此時可以利用旋轉(zhuǎn)的特征等知識得到:
            ①∠APB=∠AP′C=∠AP′P+∠PP′C;
            ②AP=AP′,且∠PAP′=
          60
          60
          度,所以△APP′為
          等邊
          等邊
          三角形,則∠AP′P=
          60
          60
          度;
            ③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C為
          直角
          直角
          三角形,則∠PP′C=
          90
          90
          度,從而得到∠APB=
          150
          150
          度.
           2)請你利用第1)題的解答方法,完成下面問題:
          如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為邊BC上的點,且∠EAF=45°,試說明:EF2=BE2+FC2

          查看答案和解析>>

          (本小題滿分8分)

             某學校要在圍墻旁建一個長方形的中藥材種植實習苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD。已知木欄總長為120米,設AB邊的長為x米,長方形ABCD的面積為S平方米.

             1.(1)求S與x之間的函數(shù)關系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;

             2.(2)學校計劃將苗圃內(nèi)藥材種植區(qū)域設計為如圖所示的兩個相外切的等圓,其圓心分別為,且到AB、BC、AD的距離與到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學們參觀學習.當(l)中S取得最值時,請問這個設計是否可行?若可行,求出圓的半徑;若不可行,清說明理由.

           

          查看答案和解析>>

          (本小題滿分12分)

             如圖,在平面直角坐標系中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知,,△ABC的面積,拋物線

          經(jīng)過A、B、C三點。

             1.(1)求此拋物線的函數(shù)表達式;

             2.(2)設E是y軸右側(cè)拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;

             3.(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為?若存在,求出點M的坐標;若不存在,請說明理由.

           

          查看答案和解析>>

          (本小題滿分10分)在△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞頂點C順時針旋轉(zhuǎn),旋轉(zhuǎn)角為(0°<<180°),得到△A1B1C

          (1)如圖1,當ABCB1時,設A1B1BC相交于點D.證明:△A1CD是等邊三角形;

          (2)如圖2,連接AA1、BB1,設△ACA1和△BCB1的面積分別為S1S2

          求證:S1S2=1∶3;

          (3)如圖3,設AC的中點為E,A1B1的中點為PACa,連接EP.當等于多少度時,EP的長度最大,最大值是多少?

           

          查看答案和解析>>

          說明:

          1.如果考生的解法與本解法不同,可參照本評分標準制定相應評分細則.

          2.當考生的解答在某一步出現(xiàn)錯誤,影響了后繼部分時,如果這一步以后的解答未改變這道題的內(nèi)容和難度,可視影響程度決定后面部分的給分,但不得超過后面部分應給分數(shù)的一半;如果這一步以后的解答有較嚴重的錯誤,就不給分.

          3.為閱卷方便,本解答中的推算步驟寫得較為詳細,但允許考生在解答過程中,合理省略非關鍵性的推算步驟.

          4.解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù).

          一、選擇題(本題滿分21分,共有7道小題,每小題3分)

          題號

          1

          2

          3

          4

          5

          6

          7

          答案

          D

          B

          A

          C

          D

          A

          C

          二、填空題(本題滿分21分,共有7道小題,每小題3分)

          題號

          8

          9

          10

          11

          答案

          1

          題號

          12

          13

          14

          答案

          16

          (8,3)

          4

          32

           

          三、作圖題(本題滿分6分)

          15.⑴ 正確作出圖形,并做答.                     …………………………3′

          ⑵ 132 .                                     …………………………6′

          四、解答題(本題滿分72分,共有9道小題)

          16.(本小題滿分6分)

            1. ①×3,得 6x+3y=15.   ③

              ②+③,得 7x=21,

               x=3.                       …………………………3′

              把x=3代入①,得2×3+y=5,

                                 y=-1.

              ∴原方程組的解是                 ………………………………6′

              17.(本小題滿分6分)

              解:⑴ 正確補全頻數(shù)分布直方圖;            ………………………………2′

              ⑵ 樣本的中位數(shù)在155~160cm的范圍內(nèi); ………………………………4′

              ⑶ 八年級.                            ………………………………6′

              18.(本小題滿分6分)

              解:⑴  (元);  …………………………4′

              ⑵  ∵11.875元>10元,  

                      ∴選擇轉(zhuǎn)轉(zhuǎn)盤.                       ……………………………6′

              (如果學生選擇直接獲得購物券,只要回答合理即可同樣得分)

              19.(本小題滿分6分)

              解:過C作AB的垂線,交直線AB于點D,得到Rt△ACD與Rt△BCD.

              設BD=x海里,

              在Rt△BCD中,tan∠CBD=,

              ∴CD=x ?tan63.5°.

              在Rt△ACD中,AD=AB+BD=(60+x)海里,tan∠A=

              ∴CD=( 60+x ) ?tan21.3°.                 ……………………………4′

              ∴x?tan63.5°=(60+x)?tan21.3°,即

              解得,x=15.

              答:輪船繼續(xù)向東航行15海里,距離小島C最近. …………………………6′

              20.(本小題滿分8分)

              解:⑴ 設生產(chǎn)A種飲料x瓶,根據(jù)題意得:

               

               

               

              解這個不等式組,得20≤x≤40.

              因為其中正整數(shù)解共有21個,

              所以符合題意的生產(chǎn)方案有21種.       ……………………………4′

              ⑵ 根據(jù)題意,得 y=2.6x+2.8(100-x).

               整理,得 y=-0.2x+280.       ……………………………6′

              ∵k=-0.2<0,

              ∴y隨x的增大而減。

              ∴當x=40時成本總額最低.                …………………………8′

              21.(本小題滿分8分)

              證明:⑴ 由折疊可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.

              ∵四邊形ABCD是平行四邊形,

              ∴∠B=∠D,AB=CD,∠C=∠BAD.………2′

              ∴∠B=∠D′,AB=AD′,

              ∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.

              ∴∠1=∠3.

              ∴△ABE ≌△A D′F.   ……………4′

              ⑵ 四邊形AECF是菱形.

              由折疊可知:AE=EC,∠4=∠5.

              ∵四邊形ABCD是平行四邊形,∴AD∥BC.

              ∴∠5=∠6.∴∠4=∠6.∴AF=AE.                 

              ∵AE=EC,  ∴AF=EC.

              又∵AF∥EC,                 

              ∴四邊形AECF是平行四邊形.

              ∵AF=AE,

              ∴四邊形AECF是菱形.                 ……………………………8′

              22.(本小題滿分10分)

              解:⑴ y=(x-50)∙ w

              =(x-50) ∙ (-2x+240)

              =-2x2+340x-12000,

              ∴y與x的關系式為:y=-2x2+340x-12000.   ……………………3′

              ⑵ y=-2x2+340x-12000

              =-2 (x-85) 2+2450,

              ∴當x=85時,y的值最大.                 ………………………6′

              ⑶ 當y=2250時,可得方程。2 (x-85 )2 +2450=2250.

              解這個方程,得  x1=75,x2=95.            ………………………8′

              根據(jù)題意,x2=95不合題意應舍去.

              ∴當銷售單價為75元時,可獲得銷售利潤2250元. …………………10′                

              23.(本小題滿分10分)

              解:⑵ ∵AP=AD,△ABP和△ABD的高相等,

              ∴SABPSABD

              又∵PD=AD-AP=AD,△CDP和△CDA的高相等,

              ∴SCDPSCDA

              ∴SPBC =S四邊形ABCD-SABP-SCDP

              =S四邊形ABCDSABDSCDA

              =S四邊形ABCD(S四邊形ABCD-SDBC)-(S四邊形ABCD-SABC)

              SDBCSABC

              ∴SPBCSDBCSABC                         ……………………………4′

              ⑶ SPBCSDBCSABC ;              ……………………………5′

              ⑷ SPBCSDBCSABC ;

              ∵AP=AD,△ABP和△ABD的高相等,

              ∴SABPSABD

              又∵PD=AD-AP=AD,△CDP和△CDA的高相等,

              ∴SCDPSCDA

              ∴SPBC =S四邊形ABCD-SABP-SCDP

              =S四邊形ABCDSABDSCDA

              =S四邊形ABCD(S四邊形ABCD-SDBC)-(S四邊形ABCD-SABC)

              SDBCSABC

              ∴SPBCSDBCSABC .             ……………………………8′

              問題解決: SPBCSDBCSABC .      ……………………………10′

              24.(本小題滿分12分)

              解:⑴ 根據(jù)題意:AP=t cm,BQ=t cm.

              △ABC中,AB=BC=3cm,∠B=60°,

              ∴BP=(3-t ) cm.

              △PBQ中,BP=3-t,BQ=t,

              若△PBQ是直角三角形,則∠BQP=90°或∠BPQ=90°.

              當∠BQP=90°時,BQ=BP.

              即t=(3-t ),

              t=1 (秒).

                    當∠BPQ=90°時,BP=BQ.

              3-t=t,

              t=2 (秒).

              答:當t=1秒或t=2秒時,△PBQ是直角三角形.   …………………4′

              ⑵ 過P作PM⊥BC于M .

              Rt△BPM中,sin∠B=,

              ∴PM=PB?sin∠B=(3-t ).

              ∴S△PBQBQ?PM=? t ?(3-t ).

              ∴y=S△ABC-S△PBQ

              ×32×? t ?(3-t )

                     =. 

              ∴y與t的關系式為: y=.   …………………6′

              假設存在某一時刻t,使得四邊形APQC的面積是△ABC面積的

              則S四邊形APQCSABC

              ××32×

              ∴t 2-3 t+3=0.

              ∵(-3) 2-4×1×3<0,

              ∴方程無解.

              ∴無論t取何值,四邊形APQC的面積都不可能是△ABC面積的.……8′

              ⑶ 在Rt△PQM中,

              MQ=

              MQ 2+PM 2=PQ 2

              ∴x2=[(1-t ) ]2+[(3-t ) ]2

                      ==3t2-9t+9.         ……………………………10′

              ∴t2-3t=

              ∵y=,

              ∴y=.                  

              ∴y與x的關系式為:y=.       ……………………………12′

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>