日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (6)已知有 . 為兩條不同的直線.. 為兩個不同的平面.則下列命題中正確的命題是 查看更多

           

          題目列表(包括答案和解析)

          已知m、n為兩條不同直線,α、β為兩個不重合的平面,給出下列命題中正確的有( 。
          m⊥α
          m⊥n
          ⇒n∥α
          ;
          m⊥β
          n⊥β
          ⇒m∥n
          ;
          m⊥α
          m⊥β
          ⇒α∥β
          ;
          m?α
          n?α
          α∥β
          ⇒m∥n

          查看答案和解析>>

          已知m、n為兩條不同直線,α、β為兩個不重合的平面,給出下列命題中正確的有(  )
          m⊥α
          m⊥n
          ?nα
          ;
          m⊥β
          n⊥β
          ?mn
          ;
          m⊥α
          m⊥β
          β

          m?α
          n?α
          αβ
          ?mn
          A.③④B.②③C.①②D.①②③④

          查看答案和解析>>

          已知m、n為兩條不同直線,α、β為兩個不重合的平面,給出下列命題中正確的有( )
          ;
          ;
          ;

          A.③④
          B.②③
          C.①②
          D.①②③④

          查看答案和解析>>

          已知m、n為兩條不同直線,α、β為兩個不重合的平面,給出下列命題中正確的有

          [  ]
          A.

          ③④

          B.

          ②③

          C.

          ①②

          D.

          ①②③④

          查看答案和解析>>

          2、已知兩條不同的直線m、n和平面α.給出下面三個命題:
          ①m⊥α,n⊥α?m∥n;②m∥α,n∥α?m∥n;③m∥α,n⊥α?m⊥n.
          其中真命題的序號有
          ①③
          .(寫出你認為所有真命題的序號)

          查看答案和解析>>

           

          一.選擇題(本大題共12小題,每小題5分,共60分.)

          D C B B C       D C A C C       A B

          二.填空題(本大題共4小題,每小題4分,共16分.)

          (13)        (14)        (15)        (16)―1

          三.解答題

          (17)(本小題滿分12分)

          解:(Ⅰ)將一顆骰子先后拋擲2次,此問題中含有36個等可能的基本事件.    2分

          記“兩數(shù)之和為7”為事件A,則事件A中含有6個基本事件(將事件列出更好),

          ∴ P(A)

          記“兩數(shù)之和是4的倍數(shù)”為事件B,則事件B中含有9個基本事件,

          ∴ P(B)

              ∵ 事件A與事件B是互斥事件,∴ 所求概率為 .         8分

              (Ⅱ)記“點(x,y)在圓  的內(nèi)部”事件C,則事件C中共含有11個基本事件,∴ P(C)=.                                                   12分

          (18)(本小題滿分12分)

          解:(Ⅰ)∵ ABC―A1B1C1是正棱柱,

          ∴ BB1⊥AC,BP⊥AC.∴ AC ⊥ 平面PBB1

          又∵M、N分別是AA1、CC1的中點,

          ∴ MN∥AC.∴ MN ⊥ 平面PBB1      4分

          (Ⅱ)∵MN∥AC,∴A C ∥ 平面MNQ.

          QN是△B1CC1的中位線,∴B1C∥QN.∴B1C∥平面MNQ.

          ∴平面AB1 C ∥ 平面MNQ.                                               8分

          (Ⅲ)由題意,△MNP的面積

          Q點到平面ACC1A1的距離H顯然等于△A1B1C1的高的一半,也就是等于BP的一半,

          .∴三棱錐 Q ― MNP 的體積.              12分

          (19)(本小題滿分12分)

          解:(Ⅰ):

                    3分

          依題意,的周期,且,∴ .∴

          .                                            5分

          [0,], ∴ ,∴ ≤1,

            ∴ 的最小值為 ,即    ∴

                                                     7分

          (Ⅱ)∵ =2, ∴

          又 ∵ ∠∈(0,), ∴ ∠.                                  9分

          △ABC中,∵ ,,

          ,.解得

          又 ∵ 0, ∴ .                                 12分

          (20)(本小題滿分12分)

          解:(Ⅰ)對求導(dǎo)得

          依題意有 ,且 .∴ ,且

          解得 . ∴ .                             6分

          (Ⅱ)由上問知,令,得

          顯然,當(dāng)  或  時,;當(dāng)  時,

          .∴ 函數(shù)上是單調(diào)遞增函數(shù),在上是單調(diào)遞減函數(shù).

          當(dāng)時取極大值,極大值是

          當(dāng)時取極小值,極小值是.   12分

          (21)(本小題滿分12分)

          解:(Ⅰ)∵ ,

          設(shè)O關(guān)于直線

          對稱點為的橫坐標(biāo)為

          又易知直線  解得線段的中點坐標(biāo)

          為(1,-3).∴

          ∴ 橢圓方程為 .                                           5分

          (Ⅱ)顯然直線AN存在斜率,設(shè)直線AN的方程為 ,代入 并整理得:. 

          設(shè)點,,則

          由韋達定理得 ,.                       8分

          ∵ 直線ME方程為 ,令,得直線ME與x軸的交點

          的橫坐標(biāo)

          ,代入,并整理得 .   10分

          再將韋達定理的結(jié)果代入,并整理可得

          ∴ 直線ME與軸相交于定點(,0).                                  12分

          (22)(本小題滿分14分)

          證明:(Ⅰ)∵ , ∴

          顯然 , ∴ .                                       5分

          ,,……,,

          將這個等式相加,得 ,∴ .          7分

          (Ⅱ)∵ ,∴ .                     9分

          .即 .                        11分

          ,即

          .                                                14分

           

           

           

           


          同步練習(xí)冊答案