日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分6分,請在下列兩個小題中,任選其一完成即可)
          (1)解方程:x2+3x-2=0;
          (2)如圖,在邊長為1個單位長度的正方形方格紙中建立直角坐標(biāo)系,△ABC各頂點的坐標(biāo)為:A(-5,4)、B(-1,1)、C(-5,1).
          ①將△ABC繞著原點O順時針旋轉(zhuǎn)90°得到△A′B′C′,請在圖中畫出△A′B′C′;
          ②寫出A′點的坐標(biāo).

          查看答案和解析>>

          25.(本小題滿分14分)

          如圖13,二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C(0,-1),ΔABC的面積為。

          (1)求該二次函數(shù)的關(guān)系式;

          (2)過y軸上的一點M(0,m)作y軸上午垂線,若該垂線與ΔABC的外接圓有公共點,求m的取值范圍;

          (3)在該二次函數(shù)的圖象上是否存在點D,使四邊形ABCD為直角梯形?若存在,求出點D的坐標(biāo);若不存在,請說明理由。

          查看答案和解析>>

          (本小題滿分5分)計算 : 

           

          查看答案和解析>>

          (本小題滿分12分)如圖,在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,拋物線過點、點,且與軸的另一交點為,其中>0,又點是拋物線的對稱軸上一動點.

          (1)求點的坐標(biāo),并在圖1中的上找一點,使到點與點的距離之和最小;

          (2)若△周長的最小值為,求拋物線的解析式及頂點的坐標(biāo);

          (3)如圖2,在線段上有一動點以每秒2個單位的速度從點向點移動(不與端點、重合),過點軸于點,設(shè)移動的時間為秒,試把△的面積表示成時間的函數(shù),當(dāng)為何值時,有最大值,并求出最大值.

           

          查看答案和解析>>

          (本小題滿分12分)

          某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進行銷售.若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y =x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費62500元,設(shè)月利潤為w內(nèi)(元)(利潤 = 銷售額-成本-廣告費).若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時,每月還需繳納x2 元的附加費,設(shè)月利潤為w(元)(利潤 = 銷售額-成本-附加費).

          1.(1)當(dāng)= 1000時,=        元/件,w內(nèi) =         元;

          2.(2)分別求出w內(nèi),wx間的函數(shù)關(guān)系式(不必寫x的取值范圍);

          3.(3)當(dāng)x為何值時,在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值;

          4.(4)如果某月要將5000件產(chǎn)品全部銷售完,請你通過分析幫公司決策,選擇在國內(nèi)還是在國外銷售才能使所獲月利潤較大?

          參考公式:拋物線的頂點坐標(biāo)是

           

          查看答案和解析>>

          一.1.C;  2.C; 3.C;  4.B;  5.D;  6.B;  7.A; 8.B;  9.A;  10.C。

          二.11.x≥2;   12.1;   13.25°; 。保矗保矗; 。保担保叮弧 

          16.180;   17.①,③;  。保福

          三.19解:原式?????????????????????????????????????????????????????????????????????????? 2分

          ???????????????????????????????????????????????????????????????????????????????????????????? 5分

          當(dāng)時,原式.??????????????????????????????????????????????????????? 7分.

          20.解:(1)(名),

          本次調(diào)查了90名學(xué)生.?????????????????????????????????????????????????????????????????????????????????????? (2分)

          補全的條形統(tǒng)計圖如下:

          文本框: 知道文本框: 記不清文本框: 不知道(名),

          估計這所學(xué)校有1500名學(xué)生知道母親的生日.??????????????????????????????????????????????????? (6分)

          (3)略(語言表述積極進取,健康向上即可得分).?????????????????????????????????????????????? (7分)

          21.(本題滿分8分)

          解:(1)如圖,由題意得,∠EAD=45°,∠FBD=30°.

          ∴ ∠EAC=∠EAD+∠DAC =45°+15°=60°.

          ∵  AE∥BF∥CD,

          ∴  ∠FBC=∠EAC=60°.

          ∴ ∠DBC=30°. ???????????????????????????????????????? 2分

          又∵ ∠DBC=∠DAB+∠ADB,

            ∴ ∠ADB=15°.

          ∴ ∠DAB=∠ADB. ∴  BD=AB=2.

            即B,D之間的距離為2km.???????????????????????????????????????????????????????????????????????????????? 4分

          (2)過B作BO⊥DC,交其延長線于點O,

            在Rt△DBO中,BD=2,∠DBO=60°.

            ∴ DO=2×sin60°=2×,BO=2×cos60°=1.??????????????????????????????????????????????????? 6分

            在Rt△CBO中,∠CBO=30°,CO=BOtan30°=,

            ∴ CD=DO-CO=(km).

            即C,D之間的距離為km. ????????????????????????????????????????????????????????????????????????? 8分

           

          22.解:(1)

          (2)290,甲,20.????????????????????????????????????????????????????????????????????????????????? 6分(每空1分)

          (3)在5月17日,甲廠生產(chǎn)帳篷50頂,乙廠生產(chǎn)帳篷30頂.???????????????????????????????????? 6分

          設(shè)乙廠每天生產(chǎn)帳篷的數(shù)量提高了,則?????????????????????????????????????? 7分

          答:乙廠每天生產(chǎn)帳篷的數(shù)量提高了.?????????????????????????????????????????????????????????????????? 8分

           

           

          23.解:(1)① 等邊三角形;②重疊三角形的面積為.?????????????????????????? 5分

          (2)用含的代數(shù)式表示重疊三角形的面積為;?????????????????????????? 7分

          的取值范圍為..................................................8分

          (3)能;t=2。.............................................................10分.

          24.本小題滿分10分.

          (Ⅰ)證明  將△沿直線對折,得△,連

          則△≌△.    ????????????????????????????????????????????????????????????????????????????????????????? 1分

          ,,

          又由,得 .  ????????????????????????????????????????? 2分

          ,

          . ??????????????????????????????????????????????????????????????????????????????????????????????????? 3分

          ,

          ∴△≌△.    ???????????????????????????????????????????????????????????????????????????????????????????? 4分

          .???????????????????????????????????????????????????????????? 5分

          ∴在Rt△中,由勾股定理,

          .即. ??????????????????????????????????????????????????????? 6分

          (Ⅱ)關(guān)系式仍然成立.  ???????????????????????????????????????????????????????????? 7分

          證明  將△沿直線對折,得△,連,

          則△≌△. ???????????????????????????????????????????????????? 8分

          ,,

          ,

          又由,得

          .   ??????????????????????????????????????????????????????????????????????????????????????????????? 8分

          ,

          ∴△≌△

          ,,,

          .  

          ∴在Rt△中,由勾股定理,

          .即.????????????????????????????????????????????????????????? 9分

          (3).能;在直線AB上取點M,N使∠MCN=45°......................10分

          25.(本題滿分12分)

          解:(1)設(shè)正方形的邊長為cm,則

          .?????????????????????????????????????????????????????????????????????????????????????????????? 1分

          解得(不合題意,舍去),

          剪去的正方形的邊長為1cm.???????????????????????????????????????????????????????????????????????????????????? 3分

          (注:通過觀察、驗證直接寫出正確結(jié)果給3分)

          (2)有側(cè)面積最大的情況.

          設(shè)正方形的邊長為cm,盒子的側(cè)面積為cm2,

          的函數(shù)關(guān)系式為:

          .????????????????????????????????????????????????????????????????????????????????????????????????????? 5分

          改寫為

          當(dāng)時,

          即當(dāng)剪去的正方形的邊長為2.25cm時,長方體盒子的側(cè)面積最大為40.5cm2.?????????????? 7分

          (3)有側(cè)面積最大的情況.

          設(shè)正方形的邊長為cm,盒子的側(cè)面積為cm2

          若按圖1所示的方法剪折,則的函數(shù)關(guān)系式為:

          當(dāng)時,.??????????????????????????????????? 9分

          若按圖2所示的方法剪折,則的函數(shù)關(guān)系式為:

          當(dāng)時,.??????????????????????????????????????????????????????????????????????????????????????? 11分

          比較以上兩種剪折方法可以看出,按圖2所示的方法剪折得到的盒子側(cè)面積最大,即當(dāng)剪去的正方形的邊長為cm時,折成的有蓋長方體盒子的側(cè)面積最大,最大面積為cm2

          說明:解答題各小題只給了一種解答及評分說明,其他解法只要步驟合理,解答正確,均應(yīng)給出相應(yīng)分?jǐn)?shù).

          26.(本小題滿分12分)

          解:(1)在Rt△ABC中,

          由題意知:AP = 5-t,AQ = 2t,

          若PQ∥BC,則△APQ ∽△ABC,

          ,

          .                                 ??????????????????????????????????????????????????????? 3′

          (2)過點P作PH⊥AC于H.

          ∵△APH ∽△ABC,

          ,

          ,

          .       ??????????????????????????????????????????? 6′

          (3)若PQ把△ABC周長平分,

          則AP+AQ=BP+BC+CQ.

          ,   

          解得:

          若PQ把△ABC面積平分,

          ,  即-+3t=3.

          ∵ t=1代入上面方程不成立,

          ∴不存在這一時刻t,使線段PQ把Rt△ACB的周長和面積同時平分.???????????????? 9′

          (4)過點P作PM⊥AC于M,PN⊥BC于N,

          若四邊形PQP ′ C是菱形,那么PQ=PC.

          ∵PM⊥AC于M,

          ∴QM=CM.

          ∵PN⊥BC于N,易知△PBN∽△ABC.

          ,  ∴,

          ,

          ,

          解得:

          ∴當(dāng)時,四邊形PQP ′ C 是菱形.     

          此時, ,

          在Rt△PMC中,

          ∴菱形PQP ′ C邊長為.?????????????????????????????????????????????????????????????????????????? 12′

           

           

           

           

            1. <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>